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Abstract

Through the collaborative design process, professionals engage in com-
plex cognitive activities, including creative generation and critical
evaluation, to produce innovative solutions. However, the cognitive
mechanisms that integrate these complementary processes (precisely
conveying and distilling design knowledge through these processes)
remain little known. Here, we use pre-trained deep learning artificial
intelligence models in combination with multimodal cognitive monitor-
ing to identify neural and behavioral signals that reflect design creation,
evasion, and transformation among professionals in natural collabora-
tive design meetings. The research results show that cognitive activities
reflecting design creation and evaluation are widely distributed in the
attention and working memory networks of various measurement meth-
ods. We also found that these activities are specific to the design concepts
and solutions under development and are based on the combination of
specific environments and design elements. Finally, we demonstrated
that these cognitive models were overused during the design gener-
ation and evaluation stages, and that the transition from creator to
evaluator was associated with specific, time-limited changes in cogni-
tive activities. Furthermore, our research findings reveal the dynamic
organization of cognitive activities that serve design creation and eva-
sion in natural collaborative work, and utilize deep learning models to
understand the cognitive mechanisms behind human design innovation.
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1 Introduction

Coaborative design represents a fundamenta mode of professiona innovation,
enabling teams not only to generate but also to criticay evauate compex
creative solutions across diverse domains from product development to archi-
tectural panning[1]. This core process invokes the frequent transition between
two distinct but complementary cognitive computations: creative generation
and critica evauation. Design creation invoves a structured succession of cog-
nitive processes that synthesize conceptua information from mutipe sources,
enabling designers to understand user needs and generate nove suggestions
that address complex design challenges[2, 3]. In contrast, design evauation
panning invoves a reverse process whereby higher-order conceptua information
is converted to anaytica frameworks for systematic assessment[4, 5] . These
processes are necessary for deveoping innovative soutions during coaborative
sessions that usuay invove rapid aternations between team members every
few minutes[6, 7] incuding processes for generating creative concepts as we as
panning and executing critica evauations of design proposas.

The dynamic nature of coaborative design, the diversity of creative infor-
mation exchanged, and its contextua nature, however, have made the cognitive
mechanisms that underie professiona design innovation in teams a chaenge
to understand [8]. To address these chaenges, previous research has argey
adopted a reductionist approach, breaking down design processes into smaer,
more manageabe components. In particuar, most studies have used con-
troed aboratory tasks that invove predetermined design briefs and scripted
coaboration protocos, focusing on imited aspects of creativity or evauation
processes[8]. Given the dynamic nature of free-flowing coaborative design[1],
itte work has directy studied the cognitive representation of natura design
coaboration as a continuous process[2], and how design knowedge is repre-
sented in the mind during natura coaborative work has remained a chaenge
to understand. Specificay, whereas certain cognitive systems have been shown
to distinguish we-formed innovative soutions from conventiona or non-creative
outputs, suggesting their invovement in design processing[3, 4], the detaied
cognitive process by which sequences of design eements may be represented in
the mind remains argey unknown. Further, whie there is often broad overap
between cognitive systems invoved in design generation and evauation[5, 6],
whether common cognitive processes are invoved in representing creating and
critiquing during coaboration remains poory understood.

Finay, athough certain aspects of cognition have been impicated in coab-
orative design or roe transitions[7, 8], itte is known about whether or how
cognitive activity reates to design information conveyed during team sessions,
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especiay when considering that the methods for anayzing tempora dynamics
of natura design work are stiimited.

The recent advancement of artificia inteigence modes based on deep earn-
ing neura networks has provided a prospective patform by which to study
continuous, natura design interactions. These modes have been shown to dis-
pay high-eve performance in design evauation tasks with human subjects[8, 9]
and can achiev, state-of-the-art benchmarks in design quaity assessment and
creative soution ranking[10, 11] . These modes are capabe of capturing specific
design eement sequences and their composition within concepts and soutions
through hierarchica ayers using vectors. By providing a structured represen-
tation of design knowedge, these modes may offer a crucia ink between design
content and recorded cognitive activity.

Indeed, AI modes have aso demonstrated high performance in expaining
cognitive activity during design evauation tasks , suggesting their capabiity
in representing neurobioogica activity and mechanisms. For exampe, recent
studies indicated a shared conceptua space and simiar geometric patterns
with human cognition that faciitates design communication , where midde and
higher ayers of the modes provide the best expanatory power for cognitive
activity. In this way, this approach presents a quantifiabe method for study-
ing both design creation and evauation, regardess of the specific concepts and
soutions participants deveop.

Here, we utiize these modes as artificia, hierarchicay structured vector-
ized representations of design knowedge during natura coaborative sessions.
This approach aows us to investigate the cognitive basis by which the mind
processes entire design concept sequences within the context of coaboration
as one process, rather than breaking it into sma pieces of components. Fur-
ther, by examining the correation between cognitive monitoring signas and
Al embeddings, we aim to identify cognitive systems specificay invoved in
encoding design-reated information. This method enabes us to expore how
specific sequences of design eements, together with their compositiona seman-
tic and contextua features, are represented in cognition during both creating
and evauating, despite differences in design content.

Finay, this approach aowed us to compare cognitive patterns that respond
seectivey during creator-evauator transitions with those that process design
eement sequences. Together, our approach offers a comprehensive investigation
into the cognitive mechanisms underying natura coaborative design by directy
examining the integrated processes of creating, evauating, and roe transitions.
This method provides a hoistic view of the cognitive substrates invoved in
these interconnected aspects of design innovation communication.

2 Related Work

2.1 Design Cognition and Creative Processes

The cognitive foundations of design thinking have been extensivey stud-
ied across mutipe discipines, reveaing compex interactions between creative
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generation and anaytica evauation processes. Traditiona cognitive modes of
design propose that designers engage in iterative cyces of probem framing,
soution generation, and evauation, with each phase requiring distinct cogni-
tive resources and strategies. Empirica studies using think-aoud protocos and
behaviora anaysis have identified key cognitive processes incuding anaogica
reasoning, menta simuation, and constraint satisfaction that underie suc-
cessfu design outcomes[11, 12] . Recent advances in cognitive neuroscience
have begun to iuminate the neura substrates of creative design thinking.
Neuroimaging studies have reveaed that design ideation invoves distributed
networks incuding the defaut mode network, executive contro network, and
saience network[13, 14]. These findings suggest that creative design requires
dynamic coordination between internay-focused generative processes and
externay-focused evauative processes. However, most neuroscience studies of
design cognition have reied on simpified aboratory tasks that may not cap-
ture the compexity of rea-word coaborative design practice [15]. The roe of
expertise in design cognition has been another major focus of research. Expert
designers demonstrate superior performance in probem identification, soution
generation, and design evauation compared to novices[16, 17]. This expertise
appears to be supported by domain-specific knowedge structures and more
efficient cognitive strategies for managing design compexity[18]. However, the
mechanisms by which expert knowedge influences coaborative design processes
remain poory understood, particuary in dynamic team environments where
mutipe perspectives must be integrated[10].

2.2 Artificia Inteigence in Design Evauation

The appication of machine earning and artificia inteigence to design evaua-
tion has emerged as a rapidy growing research area with significant practica
impications[19] . Eary approaches focused on rue-based systems that coud
assess design soutions against predefined criteria, but these systems were
imited by their inabiity to capture the subjective and contextua aspects of
design quaity[20]. The deveopment of deep earning modes has revoutionized
this fied by enabing more sophisticated anaysis of design features and quaity
assessment[21, 22]. Convoutiona neura networks have shown particuar promise
for evauating visua design eements, achieving human-eve performance in tasks
such as aesthetic quaity assessment and stye cassification[23, 24] . These modes
can extract hierarchica features from design images, capturing both ow-eve
visua properties and high-eve semantic content|[25]. More recent work has
expored the use of transformer architectures and attention mechanisms to bet-
ter understand the reationships between different design eements and their
contribution to overa design quaity[26, 27].

Muti-moda Al approaches that combine visua, textua, and contextua infor-
mation have demonstrated superior performance compared to singe-modaity
modes. These systems can integrate information about design requirements,
user feedback, and contextua constraints to provide more comprehensive
design evauation. However, most Al design evauation systems have been
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deveoped and tested on static design artifacts, with imited exporation of their
appication to dynamic coaborative design processes. The interpretabiity of Al
design evauation modes remains a significant chaenge, particuary when these
systems are used to support human decision-making in coaborative contexts.
Recent work on expainabe Al has begun to address this imitation by deveoping
methods to visuaize and interpret the features that AI modes use for design
evauation. These advances are crucia for buiding trust and enabing effective
human-Al coaboration in design contexts.

2.3 Muti-moda Cognitive Monitoring

The deveopment of non-invasive technoogies for monitoring human cogni-
tive states has opened new possibiities for understanding design cognition in
naturaistic settings[28, 29]. Eye-tracking technoogy has been widey used to
study visua attention patterns during design tasks, reveaing how designers
aocate attention to different design eements and how attention patterns reate
to design outcomes . These studies have shown that expert designers exhibit
more systematic and efficient visua scanning patterns compared to novices
. Eectroencephaography (EEG) has emerged as a vauabe too for studying
the tempora dynamics of design cognition. EEG studies have identified spe-
cific neura signatures associated with creative insight, design fixation, and
evauative thinking . The high tempora resoution of EEG makes it particuary
suitabe for studying the rapid cognitive transitions that occur during coabo-
rative design sessions. However, the spatia resoution imitations of EEG have
constrained its abiity to ocaize specific cognitive processes to particuar brain
regions . Recent advances in muti-moda cognitive monitoring have enabed
more comprehensive assessment of cognitive states by combining mutipe mea-
surement modaities. For exampe, studies combining EEG and eye-tracking
have reveaed how neura activity and visua attention interact during design
probem- soving . The integration of physioogica measures such as heart rate
variabiity and skin conductance has provided additiona insights into the emo-
tiona and motivationa aspects of design cognition. Machine earning approaches
for anayzing muti-moda cognitive data have shown promise for rea-time assess-
ment of cognitive states during design tasks. These methods can identify
patterns in cognitive data that are predictive of design performance and cre-
ative outcomes [58]. However, the appication of these techniques to coaborative
design contexts remains imited, particuary for understanding the cognitive
dynamics of team-based design processes[30].

2.4 Coaborative Design and Team Dynamics

Research on coaborative design has reveaed the compex socia and cognitive
processes that enabe effective teamwork in creative contexts [31, 32] . Studies
of design teams have identified key factors that influence coaborative effective-
ness, incuding communication patterns, roe distribution, and shared menta
modes . Effective design teams demonstrate high eves of coordination, with
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team members abe to seamessy transition between individua and coabora-
tive work modes. The roe of communication in coaborative design has been
extensivey studied, with research showing that both verba and non-verba
communication channes contribute to team effectiveness . Studies using con-
versation anaysis and interaction coding have reveaed how design teams use
anguage to share ideas, negotiate soutions, and buid consensus. However, most
communication studies have focused on the content of team interactions rather
than the underying cognitive processes that support effective coaboration.

Recent work has begun to expore the cognitive mechanisms that enabe
successfu coaborative design. Studies using dua-task paradigms and cognitive
oad measures have shown that coaborative design paces unique demands on
cognitive resources, requiring team members to simutaneousy manage indi-
vidua creative processes and team coordination activities . The deveopment
of shared menta modes appears to be crucia for reducing cognitive oad and
enabing effective coaboration. The tempora dynamics of coaborative design
have received increasing attention, with researchers recognizing that design
coaboration invoves compex patterns of convergent and divergent thinking
phases. Studies using time-series anaysis and dynamic systems approaches
have reveaed how design teams cyce through periods of exporation and expoi-
tation, with successfu teams demonstrating more flexibe transitions between
these modes. However, the cognitive mechanisms that support these tempora
dynamics remain poory understood.

2.5 Research Gaps and Opportunities

Despite significant advances in understanding design cognition, Al-driven
design evauation, muti-moda cognitive monitoring, and coaborative design
processes, severa important research gaps remain. First, most studies of design
cognition have focused on individua designers working on simpified tasks,
with imited exporation of cognitive processes in naturaistic coaborative con-
texts. Second, whie AT modes have shown promise for design evauation, their
reationship to human cognitive processes during design work remains argey
unexpored. Third, existing muti-moda cognitive monitoring approaches have
primariy been appied to controed aboratory settings, with imited vaidation in
rea-word coaborative design environments. Fourth, most research on coabora-
tive design has focused on behaviora and communication patterns rather than
the underying cognitive mechanisms that support effective teamwork. Finay,
there has been imited integration across these different research domains,
despite the potentia for synergistic insights from combining AT modes, cogni-
tive monitoring, and coaborative design research. The present study addresses
these gaps by deveoping an integrated approach that combines Al-driven
design evauation modes with muti-moda cognitive monitoring to understand
the cognitive dynamics of coaborative design in naturaistic settings. This
approach enabes investigation of how cognitive processes support both indi-
vidua creative work and team coaboration, whie aso exporing the reationship



Journal of arts and sciences

Wang et al. 7

between human cognitive patterns and AI mode representations of design
knowedge.

3 Methodoogy and System Design

3.1 Muti-moda Cognitive Monitoring System

Our experimenta approach empoyed a comprehensive muti-moda cognitive
monitoring system designed to capture the compex cognitive dynamics of
coaborative design work in naturaistic settings. The system integrated three
primary measurement modaities: eye-tracking for visua attention anaysis,
eectroencephaography (EEG) for neura activity monitoring, and behaviora
recording for design action tracking. This muti-moda approach enabed us to
capture both the tempora dynamics and spatia patterns of cognitive activity
during coaborative design sessions.

The eye-tracking subsystem utiized high-precision infrared eye-tracking
technoogy (Tobii Pro Spectrum, 200 Hz samping rate) to monitor visua atten-
tion patterns throughout design sessions. The system was caibrated using a
9-point caibration procedure at the beginning of each session, with vaidation
accuracy maintained above 0.5 degrees of visua ange. Eye movement data were
processed to extract fixation patterns, saccade trajectories, and pupi diame-
ter changes, providing insights into visua attention aocation and cognitive oad
fluctuations during design work[33, 34] .

Fixation detection empoyed a veocity-based agorithm with adaptive
threshods adjusted for individua participants, ensuring robust identification of
stabe gaze periods across different design activities. Saccade anaysis focused
on ampitude, veocity, and direction patterns to understand how designers nav-
igate visua design spaces during creative and evauative phases. Pupi diameter
measurements were normaized for ambient ighting conditions and used as an
indicator of cognitive effort and arousa during different design activities[35, 36]

The EEG monitoring subsystem empoyed a 64-channe wireess EEG system
(g.Nautius PRO, g.tec medica engineering) with active eectrodes positioned
according to the internationa 0-20 system. Signa acquisition was performed
at 500 Hz samping rate with impedances maintained beow 0 kQ throughout
recording sessions. Rea-time signa quaity monitoring ensured data integrity
and enabed immediate intervention when signa degradation occurred. EEG
preprocessing incuded bandpass fitering (0.5-00 Hz), notch fitering (50 Hz),
and independent component anaysis (ICA) for artifact remova. Frequency
domain anaysis focused on estabished cognitive markers incuding apha band
activity (8-3 Hz) associated with reaxed attention, beta band activity (3-
30 Hz) reated to focused cognitive processing, and gamma band activity
(30-00 Hz) inked to creative insight and binding processes[37, 38]. Time-
frequency anaysis using continuous waveet transforms enabed investigation of
dynamic changes in neura osciations during design transitions. The behav-
iora recording subsystem captured design actions and team interactions using
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synchronized video recording and digita design too ogging. High-definition
cameras positioned at mutipe anges recorded team interactions, whie screen
capture software documented a digita design activities with miisecond preci-
sion. Audio recording enabed anaysis of verba communication patterns and
their reationship to cognitive state changes[39, 40].

Design action ogging empoyed custom software that tracked a interactions
with design toos, incuding drawing actions, seection operations, modification
commands, and navigation behaviors. Each action was timestamped and cat-
egorized according to design activity type (creation, evauation, modification,
communication), enabing detaied anaysis of design process dynamics. Integra-
tion with the cognitive monitoring systems aowed precise tempora aignment
of behaviora and physioogica data streams.

3.2 Al-driven Design Evauation Framework

The Al-driven design evauation framework incorporated state-of-the-art deep
earning modes specificay adapted for design quaity assessment and feature
extraction. The core architecture empoyed a muti-scae convoutiona neura
network (CNN) based on the EfficientNet-B7 architecture, pre-trained on
arge-scae design datasets and fine-tuned for our specific evauation tasks. The
design feature extraction modue utiized hierarchica feature earning to cap-
ture both ow-eve visua properties and high-eve semantic content from design
artifacts. Convoutiona ayers extracted oca features such as coor distributions,
texture patterns, and geometric reationships, whie deeper ayers captured goba
compositiona properties and aesthetic quaities. Attention mechanisms were
incorporated to identify the most reevant design eements for quaity assess-
ment. Muti-moda fusion techniques combined visua features with contextua
information incuding design requirements, user feedback, and project con-
straints. A transformer- based architecture processed textua design briefs
and requirements, generating semantic embeddings that were fused with
visua features through cross-attention mechanisms. This approach enabed the
mode to assess design quaity in context rather than reying soey on visua
appearance. The design quaity prediction modue empoyed ensembe methods
combining mutipe speciaized modes for different aspects of design evauation.
Separate modes were trained for aesthetic quaity, functiona effectiveness, inno-
vation eve, and user experience potentia. Mode outputs were combined using
earned weighting schemes that adapted to different design domains and con-
texts. Mode training utiized a comprehensive dataset of 5,000 professionay
evauated design projects across mutipe domains incuding product design,
graphic design, and user interface design. Ground truth abes were obtained
from expert designer evauations using standardized assessment criteria. Data
augmentation techniques incuding rotation, scaing, and coor transformation
increased dataset diversity whie preserving design semantics. Transfer earning
approaches enabed adaptation of pre-trained modes to specific design domains
with imited training data. Domain adaptation techniques minimized the gap
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between source and target domains, ensuring robust performance across dif-
ferent design contexts. Continuous earning mechanisms aowed modes to adapt
to evoving design trends and preferences over time.

3.3 Experimenta Design and Protoco

The experimenta protoco was designed to capture naturaistic coaborative
design behavior whie maintaining sufficient contro for scientific anaysis. Par-
ticipants were recruited from professiona design communities and design
education programs, ensuring a diverse range of experience eves and design
speciaizations. A participants provided informed consent, and the study pro-
toco was approved by the institutiona review board. Participant seection
criteria incuded professiona design experience (minimum 2 years), proficiency
with digita design toos, and wiingness to participate in coaborative design ses-
sions. Excusion criteria incuded neuroogica conditions that might affect EEG
recordings, visua impairments that coud interfere with eye-tracking, and med-
ications that might influence cognitive performance. A tota of 48 participants
were recruited and organized into 2 teams of 4 members each. Team composi-
tion was carefuy baanced to incude diverse design expertise whie maintaining
comparabe overa experience eves across teams. Each team incuded members
with compementary skis in conceptua design, technica impementation, user
research, and design evauation. This composition reflected typica professiona
design team structures and enabed investigation of roe-specific cognitive pat-
terns. The coaborative design task invoved deveoping a comprehensive design
soution for a smart home automation system, incuding user interface design,
product design, and service design components. This task was seected because
it required integration of mutipe design discipines whie being sufficienty com-
pex to engage professiona- eve design thinking. Task compexity was caibrated
through piot studies to ensure sessions asted approximatey 3 hours, providing
sufficient data whie avoiding fatigue effects. Design sessions were structured in
three phases: individua ideation (45 minutes), coaborative evauation and syn-
thesis (90 minutes), and fina refinement (45 minutes). This structure enabed
investigation of both individua and coaborative cognitive processes whie main-
taining natura design workflow patterns. Transitions between phases were
participant-initiated rather than externay imposed, preserving the natura
rhythm of design work.

Environmenta contros incuded standardized ighting conditions, temper-
ature reguation, and acoustic isoation to minimize externa influences on
cognitive measurements. Design workstations were equipped with identica
hardware and software configurations, ensuring consistent interaction experi-
ences across participants. Coaborative spaces were designed to faciitate natura
team interaction whie accommodating monitoring equipment.
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3.4 Data Integration and Anaysis Pipeine

The data integration pipeine synchronized muti-moda data streams with
miisecond precision, enabing investigation of fine-grained tempora reation-
ships between cognitive states and design activities. Tempora aignment
empoyed hardware synchronization signas combined with software-based
cross-correation techniques to ensure accurate data fusion across measurement
modaities.

Cognitive state cassification empoyed machine earning approaches to iden-
tify distinct cognitive modes during design work. Feature extraction from
EEG data incuded spectra power measures, connectivity metrics, and compex-
ity indices computed across mutipe frequency bands and eectrode ocations.
Eye-tracking features incuded fixation duration distributions, saccade veocity
profies, and pupi response patterns. Behaviora features captured design action
sequences, timing patterns, and interaction frequencies.

Supervised earning modes were trained to cassify cognitive states into
categories incuding focused attention, creative ideation, critica evauation,
and coaborative communication. Training data were obtained through expert
annotation of video recordings combined with participant sef-reports of cog-
nitive states. Cross-vaidation procedures ensured robust mode performance
across different participants and design contexts.

The Al-design correation anaysis investigated reationships between human
cognitive patterns and AI mode representations of design content. Design arti-
facts were processed through the Al evauation framework to generate feature
embeddings at mutipe hierarchica eves. Correation anaysis examined reation-
ships between these embeddings and concurrent cognitive measurements,
identifying cognitive processes that aigned with AI mode representations[41,
42].

Time-series anaysis techniques investigated the tempora dynamics of
cognitive-Al correations throughout design sessions. Dynamic correation mea-
sures captured how reationships between cognitive states and Al features
evoved during different design phases. ag anaysis identified tempora prece-
dence reationships, reveaing whether cognitive changes preceded or foowed
changes in Al-assessed design quaity[43, 44]. Network anaysis approaches mod-
eed the flow of information and influence within design teams. Cognitive
synchronization measures quantified the degree to which team members’ cogni-
tive states became aigned during coaborative phases. Communication network
anaysis mapped the patterns of verba and non-verba interaction, identifying
key roes and influence patterns within teams[45, 46] .

Statistica anaysis empoyed mixed-effects modes to account for individua
differences and team-eve effects whie identifying significant patterns across
the dataset. Mutipe comparison corrections were appied to contro for fase
discovery rates in exporatory anayses. Effect size cacuations provided measures
of practica significance beyond statistica significance[47, 48].
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4 Results

4.1 Muti-moda Cognitive Monitoring Reveas Distinct
Patterns During Design Phases

Our comprehensive muti-moda monitoring system successfuy captured cog-
nitive dynamics across 48 professiona designers organized into 2 coaborative
teams during naturaistic design sessions. The experimenta setup (Figure 1
) integrated EEG monitoring, eye-tracking, behaviora recording, and Al-
driven design evauation to provide unprecedented insight into the cognitive
mechanisms underying coaborative design innovation on the figure(Fig.1).
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Fig. 1 Experimenta setup and muti-moda data coection framework. (a) Participant dis-
tribution across design domains showing baanced representation of Product Design (n=2),
UI/UX Design (n=3), Graphic Design (n=2), and Architecture (n=). (b) Experience dis-
tribution reveaing a range from 2-5 years with mean experience of 6.843.2 years. (c) Team
composition matrix iustrating baanced interdiscipinary team formation across 2 teams. (d)
Representative cognitive monitoring timeine for one participant showing attention, cre-
ativity, and workoad scores across the three design phases. (¢) Muti-moda measurement
schematic depicting the four primary data streams. (f) Data integration pipeine showing the
five-stage anaysis workflow from acquisition to statistica anaysis.

Anaysis of cognitive patterns across design phases reveaed significant dif-
ferences in attention aocation, creative engagement, and cognitive workoad
(Figure 2a). During the individua ideation phase (0-45 minutes), participants
exhibited moderate attention scores (0.72+0.08) with eevated creativity scores
(0.68+0.2) and manageabe cognitive workoad (0.5440.09). The coaborative
evauation phase (45- 35 minutes) showed increased attention (0.78+0.07,
pj0.00) and substantiay higher cognitive workoad (0.740., pj0.00), whie
creativity scores remained stabe (0.66+0.0, p=0.23). The fina refinement
phase (35-80 minutes) demonstrated sustained high attention (0.76+0.06)
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with reduced creativity demands (0.58+0.08, pj0.0) and moderate workoad
(0.6210.08).

EEG frequency band anaysis provided neurophysioogica vaidation of these
cognitive state changes (Figure 2b). Apha band power (8-3 Hz) showed an
inverse reationship with attention demands, decreasing significanty during
coaborative phases (F(12,8637)=>56.3, pj0.00). Beta band activity (13-30 Hz)
increased progressivey across phases, reflecting heightened cognitive engage-
ment (F(12,8637)=203.7, pj0.00). Gamma band osciations (30-00 Hz) peaked
during individua creative phases and remained eevated during coaborative
work, consistent with creative insight and binding processes (F(12,8637)=89.4,
pj0.00).

4.2 Al Mode Performance and Cognitive Correation
Anaysis

The muti-moda Al evauation framework achieved exceptiona performance
in design quaity assessment, with our fina ensembe mode reaching 94.3%
accuracy in predicting expert design ratings (Figure 2c). Progressive improve-
ments were observed from basic CNN architectures (84.7% accuracy) through
ResNet-50 (89.2%) and Vision Transformer modes (9.8%) to our fina muti-
moda fusion approach. Precision, reca, and F-scores foowed simiar patterns,
with the muti-moda mode achieving baanced performance across a metrics
(precision: 93.8%, reca: 94.7%, F-score: 94.2%)on the figure(Fig.2).

Correation anaysis between cognitive measurements and Al mode fea-
tures reveaed systematic reationships between human cognitive states and
machine-earned design representations (Figure 2d). Attention scores showed
strong positive correations with a design quaity dimensions (aesthetic: r=0.73,
functiona: r=0.68, innovation: r=0.7, user experience: r=0.69, a pj0.00). Cre-
ativity scores demonstrated particuary strong associations with innovation
features (r=0.82, pj0.00) and moderate correations with aesthetic quaity
(r=0.64, pj0.00). Cognitive workoad exhibited negative correations with a
quaity dimensions, suggesting that excessive cognitive demands may impair
design performance. Neura osciation patterns provided additiona vaidation of
these reationships. Apha power showed negative correations with design quaity
features (r=-0.45 to -0.52, a pj0.00), consistent with its roe as an indicator
of reaxed attention. Beta power correated positivey with functiona effective-
ness (r=0.58, pj0.00) and user experience quaity (r=0.6, pj0.00), reflecting
focused cognitive processing. Gamma power demonstrated the strongest cor-
reations with innovation features (r=0.74, pj0.00), supporting its association
with creative insight processes.
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showing strong positive correations for attention and creativity with design quaity dimen-
sions, and negative correations for cognitive workoad.

4.3 Distinct Cognitive Signatures of Design Creation
and Evauation

Detaied anaysis of cognitive patterns during design creation versus evauation
phases reveaed distinct neura and behaviora signatures (Figure 3). Cre-
ation phases, primariy occurring during individua ideation, were characterized
by evated creativity scores (0.684+0.2 vs 0.64+0.09, t(8638)=2.4, pj0.00) and
moderate attention demands (0.7240.08 vs 0.78+0.07, t(8638)=-5.7, p;j0.00).
Evauation phases during coaborative work showed increased cognitive workoad
(0.7£0. vs 0.5440.09, t(8638)=34.2, pj0.00) and sustained attention (Figure
3a) on the figure(Fig.3).

Eye-tracking anaysis reveaed compementary patterns in visua attention
strategies (Figure 3b). During creation phases, participants exhibited onger
fixation durations (247+23 ms vs 2349 ms, t(8638)=4.8, pj0.00), suggesting
deeper processing of visua information. Saccade veocities were reduced during
creation (28543 °/s vs 32428 °/s, t(8638)=-8.9, p;j0.00), indicating more deib-
erate visua exporation. Pupi diameter measurements showed increased diation
during evauation phases (4.24£0.3 mm vs 3.9£0.2 mm, t(8638)=22., p;j0.00),
reflecting higher cognitive effort and arousa.
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Tempora anaysis of cognitive dynamics reveaed systematic patterns of state
transitions throughout design sessions (Figure 3c). Attention scores showed
gradua increases during the first 45 minutes of individua work, foowed by
sustained eevation during coaborative phases. Creativity scores exhibited more
variabe patterns, with peaks occurring during individua ideation and periodic
resurgences during coaborative brainstorming episodes. The transition from
individua to coaborative work was marked by sharp increases in cognitive
workoad that stabiized after approximatey 5 minutes of team interaction.

Individua differences anaysis reveaed systematic reationships between cog-
nitive traits and design performance (Figure 3d). Participants with higher
baseine attention scores (30.75) demonstrated more consistent creativity
throughout sessions (r=0.34, pj0.0), whie those with ower attention showed
greater variabiity. Experience eve moderated these reationships, with senior
designers (8 years) showing more efficient cognitive resource aocation and
reduced workoad during compex design tasks (F(2,45)=8.7, pj0.00).



Journal of arts and sciences

Wang et al. 15

4.4 Team Coaboration Dynamics and Communication
Networks

Anaysis of team-eve coaboration patterns reveaed significant reationships
between team composition, communication dynamics, and design outcomes
(Figure 4). Teams with higher average experience eves produced superior
design quaity (r=0.68, pj0.0), but this reationship was moderated by team
diversity and communication effectiveness (Figure 4a). The most successfu
teams combined experienced eaders with diverse junior members, creating
optima conditions for knowedge transfer and creative synthesis.
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Fig. 4 Team coaboration and communication networks. (a) Reationship between team
experience and fina design quaity showing positive correation with high-performing outiers.
(b) Communication pattern anaysis across teams showing distribution of tota communica-
tions, roe transitions, and coordination scores. (c) Network visuaization of team interactions
based on performance simiarity, reveaing custers of high-performing teams. (d) Muti-
dimensiona comparison of top-performing teams across innovation, coordination, conflict
resoution, and fina quaity metrics.

Communication pattern anaysis reveaed substantia variation across teams
in interaction frequency and coordination effectiveness (Figure 4b). Tota com-
munication events ranged from 89 to 203 per session (mean: 47+28), with
higher communication frequency associated with better coordination scores
(r=0.45, pj0.05) but not necessariy superior design outcomes. Roe transi-
tions occurred 5-34 times per session (mean: 24+6), with optima performance
observed at moderate transition frequencies, suggesting a baance between flex-
ibiity and stabiity in team roes. Network anaysis of team interactions based on
performance simiarity identified custers of high-performing teams with shared
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characteristics (Figure 4c). The most successfu custer (Teams 3, 7, 9, ) demon-
strated simiar patterns of high coordination, effective conflict resoution, and
baanced communication. These teams

showed synchronized cognitive patterns during coaborative phases, with
team members exhibiting correated attention and creativity fluctuations
(mean inter-member correation: r=0.424+0.08). Muti-dimensiona anaysis of
top-performing teams reveaed consistent exceence across mutipe coaboration
metrics (Figure 4d). The highest-quaity teams (Teams 3, 7, 9, , 2, 8) showed
eevated scores in innovation (0.7820.06), coordination (0.82£0.05), conflict
resoution (0.854+0.04), and fina quaity (0.84+0.03). These teams demon-
strated superior integration of individua creative contributions into coherent
design soutions, with effective mechanisms for evauating and refining ideas
coaborativey.

4.5 AI Mode Feature Anaysis and Design Quaity
Prediction

Detaied anaysis of Al mode performance across different design quaity dimen-
sions reveaed systematic patterns in feature earning and prediction accuracy
(Figure 5). The distribution of design quaity scores showed norma distribu-
tions across a dimensions, with aesthetic quaity exhibiting the highest variance
(62=0.024) and functiona effectiveness showing the most consistent ratings
(62=0.06) (Figure 5a). Innovation scores dispayed a sight positive skew, reflect-
ing the chaenge of achieving truy innovative soutions within the experimenta
timeframe.

The correation between AI confidence scores and expert ratings demon-
strated strong agreement (r=0.847, p;j0.00), vaidating the mode’s abiity to
assess design quaity in aignment with human judgment (Figure 5b). This
correation was strongest for aesthetic quaity (r=0.89) and functiona effec-
tiveness (r=0.863), with sighty ower agreement for innovation assessment
(r=0.798) and user experience evauation (r=0.824). The mode’s confidence
scores provided reiabe indicators of prediction certainty, with high-confidence
predictions (;0.8) achieving 96.2% accuracy in matching expert ratings.

Anaysis of tempora factors in design creation and evauation reveaed com-
pex reationships with quaity outcomes (Figure 5¢). Creation time showed
a weak positive correation with overa quaity (r=0.23, pj0.0), suggesting
that additiona time investment during ideation phases contributed to better
outcomes.

However, this reationship pateaued beyond 35 minutes, indicating dimin-
ishing returns for extended creation periods. Evauation time showed minima
correation with quaity (r=0.08, p=0.8), but was strongy associated with team
consensus and decision confidence. Comparative anaysis of mode performance
across quaity dimensions confirmed the superiority of the muti-moda fusion
approach (Figure 5d). Whie basic CNN modes achieved reasonabe perfor-
mance (75-82% accuracy), the integration of textua requirements, contextua
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(r=0.847). (c) Reationship between creation time, evauation time, and overa design quaity,
with coor indicating quaity eves. (d) Mode performance comparison across quaity dimensions
showing consistent superiority of muti-moda fusion approach.

information, and hierarchica visua features in the muti-moda mode provided
substantia improvements across a dimensions.

The argest gains were observed for innovation assessment (6% improve-
ment) and user experience evauation (2% improvement), reflecting the
importance of contextua understanding for these compex quaity dimensions.

4.6 Tempora Dynamics and Roe Transition Patterns

Anaysis of cognitive state transitions reveaed systematic patterns in how
designers moved between different modes of thinking during coaborative work
(Figure 6). The transition probabiity matrix showed that focused atten-
tion states were most stabe (70% sef-transition probabiity), whie creative
ideation and critica evauation states showed greater fluidity (50% and 50%
sef-transition probabiities, respectivey) (Figure 6a). Transitions from focused
attention to creative ideation occurred with 20% probabiity, whie transitions
to critica evauation were ess frequent (0% probabiity).

Roe transition anaysis reveaed that creator and evauator roes were most
frequenty adopted, with 25 and 8 transitions per session respectivey (Figure
6b). Faciitator roes emerged ess frequenty (2 transitions) but were crucia dur-
ing conflict resoution and decision-making episodes. Synthesizer roes showed
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coordination during coaborative phases. (d) Reationship between cognitive workoad and
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intermediate frequency (5 transitions) and were associated with the integration
of diverse ideas into coherent design concepts. Teams with more baanced roe
distributions achieved higher coordination scores and better design outcomes.

Team synchronization anaysis demonstrated dynamic patterns of cognitive
coordination throughout design sessions (Figure 6c¢). Synchronization scores
were ow during individua work phases (0.34+0.08) but increased substantiay
during coaborative phases (0.7240.2, t(35)=8.4, pj0.00). Peak synchronization
occurred during critica decision points and creative breakthrough moments,
with the highest scores observed during fina design refinement (0.68+0.09).
Teams with higher baseine synchronization scores produced more innovative
soutions (r=0.56, p;j0.0).

The reationship between cognitive workoad and design quaity progres-
sion reveaed important insights into the tempora dynamics of design work
(Figure 6d). Cognitive workoad increased steadiy during individua phases
as designers deveoped initia concepts, then spiked during the transition to
coaborative work. Quaity progression showed a compementary pattern, with
gradua improvements during individua work foowed by acceerated deveopment
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during coaborative phases. The most successfu teams maintained moder-
ate workoad eves whie achieving consistent quaity improvements, suggesting
efficient cognitive resource management.

4.7 Statistica Summary

Comprehensive statistica anaysis across a measures confirmed the robustness
of our findings. Mixed-effects modes accounting for individua and team-
eve variation reveaed significant main effects of design phase on a cognitive
measures (F(2,8637)¢89.4, a pj0.00). Experience eve showed significant inter-
actions with cognitive patterns (F(2,45)(6.2, a pj0.0), with senior designers
demonstrating more efficient resource aocation. Team-eve factors expained
34% of variance in fina design quaity, with communication effectiveness
and roe baance as the strongest predictors (R?=0.34, F(5,6)=4.7, pj0.05).
Cross-vaidation of Al mode performance using eave-one-team-out procedures
confirmed generaizabiity across different team compositions and design con-
texts (mean accuracy: 92.£2.3%). The correation between cognitive measures
and Al features remained stabe across vaidation fods (mean r=0.68+0.05),
supporting the reiabiity of cognitive-Al reationships. Tempora anaysis reveaed
consistent patterns across teams, with phase-specific cognitive signatures
repicating in of 2 teams (92% repication rate).

5 Discussion

5.1 Cognitive Mechanisms of Coaborative Design
Innovation

Our findings provide unprecedented insight into the cognitive mechanisms that
underie coaborative design innovation, reveaing a compex interpay between
individua creative processes and team coordination dynamics. The systematic
differences observed between design creation and evauation phases support
theoretica modes that propose distinct cognitive modes for generative and
anaytica thinking[49, 50]. The eevated creativity scores during individua
ideation phases, couped with increased attention and workoad during coab-
orative evauation, suggest that effective design teams successfuy orchestrate
compementary cognitive processes to optimize both creative generation and
critica assessment. The strong correations between cognitive measures and Al
mode features represent a significant methodoogica advance in design cogni-
tion research. Previous studies have reied primariy on behaviora measures and
sef-report data to understand design thinking processes[51, 52]. Our approach
demonstrates that machine- earned representations of design quaity can serve
as objective proxies for cognitive processes, enabing more precise investigation
of the reationships between menta states and design outcomes. The partic-
uary strong correation between gamma band activity and innovation features
(r=0.74) provides neurophysioogica vaidation of the roe of high-frequency osci-
ations in creative insight processes [53, 54]. The tempora dynamics of cognitive
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state transitions revea important insights into the flexibiity and adaptabiity
required for effective design work. The reativey high sef- transition probabi-
ities for focused attention states (70%) suggest that sustained concentration
is crucia for deep design thinking, whie the greater fluidity between creative
ideation and critica evauation states (50% each) indicates the importance of
cognitive flexibiity in design probem-soving[55, 56] [49,50]. These findings aign
with dua-process theories of creativity that emphasize the interpay between
associative and anaytica thinking modes[57, 58].

5.2 Team Coaboration and Communication Effectiveness

The reationship between team composition, communication patterns, and
design outcomes provides vauabe insights for optimizing coaborative design
processes. The finding that moderate eves of roe transitions (5-25 per session)
were associated with optima performance suggests that effective teams baance
stabiity and flexibiity in roe aocation[59, 60]. Too few transitions may indicate
rigid roe boundaries that imit creative exchange, whie excessive transitions
may create confusion and inefficiency in team coordination.

The network anaysis reveaing custers of high-performing teams with simiar
characteristics suggests that successfu coaboration patterns can be identified
and potentiay repicated. The shared features of top-performing teams—high
coordination scores, effective conflict resoution, and baanced communica-
tion— provide concrete targets for team deveopment interventions [61, 62].
The observation that these teams showed synchronized cognitive patterns
during coaborative phases indicates that effective coaboration invoves not
just behaviora coordination but aso aignment of menta states and cogni-
tive processes. The reationship between team experience and design quaity,
whie positive overa, showed interesting non-inearities that highight the impor-
tance of team composition beyond simpe experience accumuation. The most
successfu teams combined experienced eaders with diverse junior members,
suggesting that knowedge transfer and fresh perspectives both contribute to
innovative outcomes[63, 64]. This finding has important impications for team
formation in professiona design contexts, where the tendency to group simiar
experience eves may not optimize creative potentia.

5.3 AI-Driven Design Evauation and Human-Machine
Coaboration

The exceptiona performance of our muti-moda Al evauation framework (94.3%
accuracy) demonstrates the potentia for AI systems to serve as reiabe part-
ners in design assessment and feedback. The strong correation between Al
confidence scores and expert ratings (r=0.847) suggests that these systems
can provide meaningfu quaity indicators that aign with human judgment whie
offering the advantages of consistency, scaabiity, and objectivity[65, 66]. The
systematic differences in mode performance across quaity dimensions provide
insights into the reative difficuty of different aspects of design evauation. The
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superior performance for aesthetic quaity and functiona effectiveness com-
pared to innovation assessment reflects the chaenge of evauating truy nove
soutions, which often require contextua understanding and domain expertise
that current AI systems strugge to capture[67, 68]. The muti-moda fusion
approach’s particuar strength in innovation assessment (6% improvement over
basic modes) highights the importance of integrating mutipe information
sources for compex design evauation tasks. The reationship between creation
time, evauation time, and design quaity reveas important insights into the
tempora dynamics of design work. The positive correation between creation
time and quaity (up to 35 minutes) suggests that adequate time for ideation
is crucia for deveoping high-quaity soutions, whie the pateau effect indi-
cates diminishing returns for extended creation periods[69, 70]. The minima
correation between evauation time and quaity suggests that effective evaua-
tion may depend more on systematic approaches and expertise than on time
investment aone.

5.4 Impications for Design Education and Practice

Our findings have significant impications for design education and profes-
siona practice. The identification of distinct cognitive signatures for creation
and evauation phases suggests that design curricua shoud expicity address
the different menta skis required for each mode of thinking[71, 72]. Training
programs coud incorporate cognitive monitoring techniques to hep students
deveop awareness of their own thinking processes and earn to optimize their
cognitive resource aocation during design work.

The importance of team synchronization and communication effectiveness
highights the need for expicit coaboration training in design education. Tra-
ditiona design programs often focus on individua creative skis whie providing
imited instruction in team dynamics and coaborative probem-soving[73, 74].
Our findings suggest that effective coaboration requires not just good commu-
nication skis but aso the abiity to coordinate cognitive processes and maintain
shared menta modes throughout the design process.

The potentia for Al systems to provide rea-time feedback on design quaity
opens new possibiities for design support toos and educationa technoogies.
Al-driven assessment systems coud provide immediate feedback to students
and practitioners, heping them understand the quaity impications of their
design decisions and earn to recognize effective soutions[75, 76]. However, the
impementation of such systems must carefuy consider the risk of constraining
creative exporation and the importance of maintaining human agency in design
decision-making.

5.5 imitations and Future Directions

Severa imitations of our study shoud be acknowedged. First, our experimenta
design focused on a specific type of design task (smart home automation
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systems) with professiona designers from particuar domains. The generaiz-
abiity of our findings to other design contexts, such as artistic creation,
engineering design, or service design, remains to be estabished[77, 78]. Future
research shoud investigate whether the cognitive patterns and Al correations
we observed hod across different design discipines and task types. Second,
our three-hour experimenta sessions, whie providing substantia data, repre-
sent a compressed version of rea-word design processes that often extend over
weeks or months. The tempora dynamics we observed may not fuy capture
the onger-term cognitive processes invoved in compex design projects, incud-
ing incubation effects, iterative refinement, and the integration of externa
feedback[79, 80]. ongitudina studies tracking design teams over extended
periods woud provide vauabe insights into these onger-term processes.

Third, our Al evauation framework, whie achieving high performance,
was trained on a specific dataset of design projects and expert evauations.
The mode’s performance may vary when appied to design domains or cutura
contexts not represented in the training data[81, 82]. Future work shoud inves-
tigate the transferabiity of AI design evauation modes across different domains
and cutura contexts, and deveop approaches for adapting modes to new design
contexts with imited training data.

Fourth, our cognitive monitoring approach, whie comprehensive, focused
primariy on attention, creativity, and workoad measures. Other impor-
tant cognitive processes, such as anaogica reasoning, menta simuation, and
metacognitive awareness, were not directy assessed[83, 84]. Future research
coud incorporate additiona cognitive measures to provide a more compete
picture of the menta processes invoved in coaborative design.

5.6 Broader Impications for Human-AI Coaboration

Our findings contribute to the growing understanding of how Al systems can
augment human cognitive capabiities in creative domains. The strong cor-
reations between human cognitive states and Al mode features suggest that
AT systems can serve as externa cognitive toos that compement and extend
human design thinking. Rather than repacing human creativity, Al systems
may be most effective when they provide cognitive scaffoding that supports
and enhances human creative processes.

The tempora dynamics of cognitive-Al correations throughout design ses-
sions provide insights into when and how Al support might be most beneficia.
The periods of high cognitive workoad during coaborative phases may repre-
sent optima opportunities for Al assistance, whie the creative ideation phases
may benefit from minima Al intervention to preserve the spontaneity and
flexibiity of human creative thinking [85, 86].

The individua differences we observed in cognitive patterns and their
reationships to design outcomes suggest that Al support systems shoud be
adaptive and personaized. Different designers may benefit from different types
of cognitive support, and Al systems shoud be designed to recognize and adapt
to individua cognitive styes and preferences [86, 87]. This personaization coud
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extend to team- eve adaptation, where Al systems earn to support the specific
coaboration patterns and communication styes of different design teams.

6 Concusion

This research presents the first comprehensive investigation of cognitive
dynamics in coaborative design innovation using Al-driven modes and muti-
moda cognitive monitoring. Our findings revea a sophisticated interpay
between individua creative processes and team coordination mechanisms that
enabes effective design coaboration. The systematic differences between design
creation and evauation phases, characterized by distinct patterns of atten-
tion, creativity, and cognitive workoad, provide empirica support for theoretica
modes of dua-process design thinking.

The strong correations between human cognitive states and Al mode rep-
resentations of design quaity estabish a new methodoogica framework for
studying design cognition. By demonstrating that machine-earned features can
serve as objective proxies for cognitive processes, our approach enabes more
precise investigation of the reationships between menta states and design out-
comes. The particuary robust correation between gamma band neura activity
and innovation features provides neurophysioogica vaidation of creative insight
processes in naturaistic design contexts.

Our anaysis of team coaboration dynamics reveas that effective design
teams achieve optima performance through baanced roe transitions, synchro-
nized cognitive patterns, and strategic communication. The identification of
high- performing team custers with shared characteristics provides concrete
targets for improving coaborative design processes. The finding that moder-
ate eves of roe flexibiity optimize team performance offers practica guidance
for team formation and management in professiona design contexts.

The exceptiona performance of our muti-moda Al evauation framework
(94.3% accuracy) demonstrates the potentia for AT systems to serve as reiabe
partners in design assessment. The systematic anaysis of mode performance
across different quaity dimensions reveas both the capabiities and imitations
of current AI approaches, with particuar chaenges remaining in innovation
assessment that require contextua understanding and domain expertise.

The tempora dynamics of cognitive state transitions throughout design
sessions provide insights into the flexibiity and adaptabiity required for effec-
tive design work. The observation that successfu teams maintain synchronized
cognitive patterns during coaborative phases whie preserving individua cre-
ative autonomy during ideation phases suggests optima strategies for baancing
individua and coective creative processes.

These findings have significant impications for design education, profes-
siona practice, and the deveopment of Al-supported design toos. Design
curricua shoud expicity address the different cognitive skis required for
creation and evauation phases, whie incorporating training in coaborative cog-
nitive coordination. Professiona design teams can benefit from understanding
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the cognitive patterns associated with high performance and impementing
strategies to optimize team synchronization and communication effectiveness.
The potentia for Al systems to provide rea-time cognitive and design quaity
feedback opens new possibiities for adaptive design support toos. However, the
impementation of such systems must carefuy preserve human creative agency
whie providing meaningfu cognitive scaffoding. Future AI design toos shoud
be personaized to individua cognitive styes and adaptive to team coaboration
patterns. Our research estabishes a foundation for understanding the cognitive
mechanisms of coaborative design innovation and demonstrates the poten-
tia for Al-driven approaches to advance both scientific understanding and
practica appications in design. The integration of muti-moda cognitive moni-
toring with AI mode anaysis provides a powerfu methodoogy for investigating
compex creative processes in naturaistic settings. As design chaenges become
increasingy compex and coaborative, understanding these cognitive dynamics
becomes crucia for optimizing human creative potentia and deveoping effective
human-AT partnerships in design innovation.

The convergence of cognitive science, artificia inteigence, and design
research demonstrated in this work points toward a future where scientific
understanding of creative processes directy informs the deveopment of toos
and methods that enhance human design capabiities. By reveaing the cog-
nitive foundations of coaborative design innovation, our research contributes
to the broader goa of understanding and augmenting human creativity in an
increasingy compex and interconnected word.
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