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Abstract
Design innovation assessment represents a critical challenge in contem-
porary creative industries, where traditional evaluation methods rely
heavily on subjective expert judgment, leading to inconsistencies, ineffi-
ciencies, and limited scalability. The emergence of artificial intelligence
technologies offers unprecedented opportunities to revolutionize design
evaluation processes, yet existing approaches suffer from black-box lim-
itations that hinder adoption in professional design contexts where
transparency and interpretability are paramount. Here we present an
explainable AI-driven framework that synergizes advanced deep learn-
ing architectures with interpretable machine learning techniques to
enable automated, objective, and transparent design innovation assess-
ment. Our hybrid approach integrates DenseNet201 for comprehensive
visual feature extraction with Support Vector Machine classification for
robust decision boundary formation, enhanced by multiple explainable
AI techniques including Gradient-weighted Class Activation Mapping,
Integrated Gradients, and Layer-wise Relevance Propagation to pro-
vide multi-level interpretability. Through comprehensive evaluation on
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a curated dataset of 5,247 design works spanning product design,
graphic design, architectural design, and user interface design, our frame-
work achieves exceptional performance with 97.8% precision, 96.4%
precision, 97. 1% recall, and 96. 7% F1 score.explainability analysis
demonstrates that Layer-wise Relevance Propagation provides the most
effective interpretability with a precision of locating the innovation ele-
ment 95. 6% and a 93.4% expert acceptance rate. User studies involving
30 design experts and 120 professional designers confirm significant
improvements in evaluation efficiency(42% time reduction) and con-
sistency (92% agreement between the judges vs. 67% for traditional
methods). This framework establishes a new paradigm for design evalu-
ation that combines computational precision with human-interpretable
insights, offering substantial potential to transform design education,
creative industry workflows, and innovation management practices.

Keywords: Design innovation assessment, Explainable artificial intelligence,
Creative work evaluation, Deep learning, Design quality metrics,
Human-computer interaction

1 Introduction
Design innovation serves as a fundamental driver of economic growth, tech-
nological advancement, and cultural evolution in the contemporary global
economy . The creative industries, which include product design, graphic
design, architectural design, and digital interface design, contribute signifi-
cantly to national GDP and employment in developed economies, with the
sector valued at over 2.25 trillion worldwide. Within this ecosystem, the ability
to accurately assess and identify innovative design solutions represents a criti-
cal capability that influences investment decisions, educational results, market
success, and competitive advantage. However, traditional approaches to design
evaluation remain fundamentally constrained by their reliance on subjective
human judgment, creating systematic challenges that limit scalability, con-
sistency, and objectivity in creative evaluation processes. The conventional
paradigm for the evaluation of design innovation typically involves expert
panels, peer review systems, or market-based validation mechanisms that,
while valuable, suffer from inherent limitations. Expert evaluations, although
using deep domain knowledge, are susceptible to individual biases, cultural
preferences, and inconsistent application of evaluation criteria in different
assessors and contexts. Studies have demonstrated that inter-rater reliability
in design evaluation often falls below acceptable thresholds, with agreement
rates ranging from 0.45 to 0.72 depending on the design domain and eval-
uation framework employed[1]. Furthermore, the time-intensive nature of
comprehensive design evaluation creates bottlenecks in educational settings,
design competitions, and commercial development processes, where rapid yet
accurate assessment is increasingly demanded[2]. The emergence of artificial
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intelligence technologies, particularly deep learning and computer vision sys-
tems, has opened unprecedented opportunities to address these fundamental
challenges in design evaluation[3]. Recent advances in convolutional neural
networks have demonstrated remarkable capabilities in visual pattern recogni-
tion, aesthetic assessment, and creative content analysis, suggesting significant
potential for automated design evaluation systems[4]. However, the application
of AI technologies to design assessment faces unique challenges that distinguish
it from traditional computer vision tasks. Unlike object recognition or medical
image analysis, design evaluation requires nuanced understanding of aesthetic
principles, cultural context, functional requirements, and innovation criteria
that extend beyond simple pattern matching. Moreover, the black-box nature
of many deep learning systems presents a critical barrier to adoption in profes-
sional design contexts, where stakeholders require transparent, interpretable
explanations for evaluation decisions[5].Design professionals, educators, and
industry decision-makers need to understand not only whether a design is
innovative, but also which specific elements contribute to that assessment and
how the evaluation aligns with established design principles[6].This require-
ment for interpretability is particularly acute in high-stakes applications such
as design education, where students need actionable feedback, and commercial
contexts, where design decisions carry significant financial implications. Recent
developments in explainable artificial intelligence (XAI) offer promising solu-
tions to these interpretability challenges, providing techniques to illuminate
the decision-making processes of complex AI systems [7]. Methods such as
Gradient-weighted Class Activation Mapping (Grad-CAM), Integrated Gradi-
ents, and Layer-wise Relevance Propagation have demonstrated effectiveness
in visualizing and explaining neural network decisions across various domains.
However, the systematic application of these techniques to design evaluation
remains largely unexplored, representing a significant opportunity to develop
transparent, trustworthy AI systems for creative assessment[8].

The complexity of design innovation assessment also necessitates multi-
dimensional evaluation frameworks that can simultaneously consider aesthetic
quality, functional effectiveness, originality, and market relevance[9] . Tra-
ditional machine learning approaches often struggle with such multi-faceted
evaluation requirements, particularly when dealing with the subjective and
context-dependent nature of design quality [10]. Hybrid approaches that
combine the feature extraction capabilities of deep learning with the inter-
pretability and robustness of traditional machine learning methods offer
potential solutions to these challenges[11]. This research addresses these criti-
cal gaps by developing a comprehensive explainable AI framework specifically
designed for automated design innovation assessment. Our approach inte-
grates state-of-the-art deep learning architectures with interpretable machine
learning techniques and multiple explainability methods to create a trans-
parent, accurate, and practically useful system fordesig n evaluation. The
framework leverages DenseNet201 for sophisticated visual feature extraction,



Journal of arts and sciences

4 Zhang et al.

Support Vector Machine classification for robust decision-making, and multi-
ple XAI techniques to provide comprehensive interpretability at different levels
of granularity.

The primary contributions of this work include,as the following five
reasons.

(1) the development of a novel hybrid AI architecture specifically optimized
for design innovation assessment that achieves superior performance compared
to existing approaches;

(2) the systematic integration and evaluation of multiple explainability
techniques to provide comprehensive interpretability for design evaluation
decisions;

(3) the creation of a large-scale, expertly annotated dataset spanning mul-
tiple design domains that enables robust training and evaluation of design
assessment systems;

(4) comprehensive empirical validation through expert evaluation and user
studies that demonstrate practical utility and acceptance in professional design
contexts;

(5) the establishment of a new paradigm for AI-assisted design eval-
uation that balances computational efficiency with human interpretability
requirements.

These contributions collectively advance the state-of-the-art in computa-
tional design assessment while addressing critical practical needs in design
education, creative industries, and innovation management. The framework’s
emphasis on explainability and multi-dimensional evaluation makes it particu-
larly suitable for integration into existing design workflows, educational curric-
ula, and professional practice contexts where transparency and interpretability
are essential for user acceptance and effective utilization.

2 Related Work
2.1 Traditional Design Evaluation Methodologies
The foundation of design evaluation has historically rested upon expert-
based assessment systems that leverage human expertise, aesthetic judgment,
and domain-specific knowledge to evaluate creative works [12]. Traditional
methodologies encompass several distinct approaches, each with character-
istic strengths and limitations that have shaped the evolution of design
assessment practices. Expert panel evaluations represent the most widely
adopted approach, typically involving multiple domain specialists who inde-
pendently assess design works according to predetermined criteria before
reaching consensus through discussion or averaging[13] . This methodology has
been extensively employed in design competitions, academic assessments, and
commercial design reviews, with established frameworks such as the Design
Excellence Framework and the Innovation Assessment Protocol providing
structured evaluation guidelines User-centered evaluation approaches consti-
tute another significant category of traditional design assessment, focusing



Journal of arts and sciences

Zhang et al. 5

on end-user responses, usability metrics, and market acceptance as primary
indicators of design quality. These methodologies typically employ surveys,
focus groups, usability testing, and market research techniques to gather
quantitative and qualitative feedback from target user populations. While
user-centered approaches provide valuable insights into practical design effec-
tiveness and market viability, they often struggle to assess innovative or
avant-garde designs that may not align with current user preferences but
represent significant creative breakthroughs.

Market-based evaluation systems represent a third category of tradi-
tional assessment, utilizing commercial success metrics, sales performance,
and market penetration as indicators of design innovation and quality. These
approaches assume that successful designs will naturally achieve market
recognition and commercial viability, providing objective measures of design
effectiveness through economic indicators[14] . However, market-based evalu-
ation suffers from temporal delays, as commercial success may take years to
manifest, and cultural or economic factors that may not reflect intrinsic design
quality.

The limitations of traditional evaluation methodologies have become
increasingly apparent as design complexity and evaluation demands have
grown. Inter-rater reliability studies consistently demonstrate significant vari-
ability in expert assessments, with correlation coefficients ranging from 0.45
to 0.78 depending on the design domain and evaluation criteria [15]. Time and
cost constraints further limit the scalability of traditional approaches, with
comprehensive expert evaluations requiring 2-4 hours per design work and
involving multiple highly qualified assessors[16] . These limitations have moti-
vated the exploration of computational approaches to design evaluation that
can provide more consistent, efficient, and scalable assessment capabilities.

2.2 Artificial Intelligence in Design and Creative
Domains

The application of artificial intelligence technologies to design and creative
domains has evolved rapidly over the past decade, driven by advances in
machine learning, computer vision, and natural language processing [17]. Early
computational approaches to design evaluation focused primarily on rule-
based systems that encoded explicit design principles and aesthetic guidelines
into algorithmic frameworks. These systems, while providing consistent and
transparent evaluation criteria, struggled with the complexity and subjectiv-
ity inherent in design assessment, often producing overly rigid or simplistic
evaluations that failed to capture nuanced aspects of creative quality . The
emergence of machine learning techniques marked a significant advancement
in computational design evaluation, enabling systems to learn evaluation crite-
ria from data rather than relying on explicitly programmed rules[18]. Support
Vector Machines, Random Forests, and other traditional machine learning
algorithms have been successfully applied to various design assessment tasks,



Journal of arts and sciences

6 Zhang et al.

including logo quality evaluation, architectural design classification, and prod-
uct design optimization. These approaches demonstrated improved flexibility
and adaptability compared to rule-based systems, though they remained lim-
ited by their reliance on hand-crafted features and relatively simple pattern
recognition capabilities. Deep learning technologies have revolutionized com-
putational approaches to design evaluation by enabling end-to-end learning of
complex visual patterns and aesthetic relationships directly from raw design
data. Convolutional Neural Networks (CNNs) have shown particular promise
in design-related tasks, with applications ranging from style classification and
aesthetic quality assessment to design generation and optimization. Notable
examples include the work of Deng et al., who developed CNN-based systems
for evaluating graphic design quality, achieving accuracy rates of 87-92% across
different design categories. Similarly, Kumar and Singh demonstrated the effec-
tiveness of deep learning approaches for architectural design assessment, with
their ResNet-based system achieving 89% accuracy in distinguishing innova-
tive from conventional architectural designs[19]. Generative AI technologies
have also contributed significantly to design-related applications, with systems
like GANs (Generative Adversarial Networks) and diffusion models enabling
automated design generation and style transfer. While primarily focused on
content creation rather than evaluation, these technologies have provided valu-
able insights into the computational representation of design aesthetics and
creative principles. The discriminator components of GAN architectures, in
particular, have demonstrated capabilities for design quality assessment that
complement their generative functions[20] . However, existing AI approaches to
design evaluation face several critical limitations that constrain their practical
utility and adoption in professional contexts. Most significantly, the black-box
nature of deep learning systems makes it difficult for design professionals to
understand and trust evaluation decisions, limiting their acceptance in con-
texts where transparency and interpretability are essential[21] . Additionally,
many existing systems focus on narrow aspects of design quality, such as
aesthetic appeal or style classification, rather than providing comprehensive
evaluation of innovation, functionality, and overall design excellence[22] .

2.3 Explainable Artificial Intelligence Technologies
The field of explainable artificial intelligence has emerged as a critical research
area addressing the interpretability challenges inherent in complex machine
learning systems[23]. XAI technologies aim to provide human-understandable
explanations for AI decisions, enabling users to comprehend, trust, and effec-
tively utilize AI systems in high-stakes applications. The development of
XAI techniques has been particularly motivated by applications in health-
care, finance, and legal domains, where decision transparency is essential
for regulatory compliance and professional acceptance[24]. Gradient-based
explanation methods represent one of the most widely adopted categories of
XAI techniques, leveraging the gradient information computed during neu-
ral network training to identify input features that most strongly influence



Journal of arts and sciences

Zhang et al. 7

model decisions[25]. Gradient-weighted Class Activation Mapping (Grad-
CAM) exemplifies this approach, generating heatmaps that highlight regions
of input images that contribute most significantly to classification decisions.
Grad-CAM has been successfully applied across numerous computer vision
tasks, including medical image analysis, object recognition, and scene under-
standing, demonstrating consistent effectiveness in providing intuitive visual
explanations.

Integrated Gradients represents a more sophisticated gradient-based
approach that addresses some limitations of simpler gradient methods by
computing attribution scores along paths from baseline inputs to actual
inputs. This technique provides more stable and theoretically grounded expla-
nations compared to basic gradient methods, with particular effectiveness
in identifying subtle but important input features. The method has shown
promise in various applications, including natural language processing, image
classification, and recommendation systems[26] .

Layer-wise Relevance Propagation (LRP) offers an alternative approach
to neural network explanation that propagates relevance scores backward
through network layers according to specific propagation rules[27]. LRP pro-
vides fine-grained explanations that can identify the contribution of individual
neurons and layers to the final decisions, offering deeper insights into the deci-
sion making processes of networks. The technique has demonstrated particular
effectiveness in applications that require a detailed understanding of feature
interactions and hierarchical pattern recognition[28].

Attention-based explanation methods leverage the attention mecha-
nisms inherent in many modern neural network architectures to provide
interpretability[29]. These approaches identify which parts of the input receive
the most attention during processing, providing natural explanations for model
decisions. Attention-based explanations have proven particularly effective in
natural language processing and multimodal learning applications. Despite sig-
nificant advances in XAI technologies, their application to design evaluation
remains limited and largely unexplored. The unique characteristics of design
assessment, including its multidimensional nature, subjective components, and
cultural dependencies, present novel challenges for explainability techniques.
Furthermore, the specific interpretability requirements of design professionals,
who need to understand not only what makes a design innovative but also how
to improve it, differ significantly from those in other application domains.

2.4 Research Gaps and Opportunities
The comprehensive review of existing literature reveals several critical gaps
that limit the effectiveness of current approaches to automated design evalua-
tion. First, existing AI systems for design assessment typically focus on single
dimensions of design quality, such as aesthetic appeal or style classification,
rather than providing holistic evaluation of innovation, functionality, usability,
and market relevance. This limitation constrains their utility in professional
contexts where comprehensive design assessment is required.
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Second, the lack of large-scale, expertly annotated datasets specifically
designed for design innovation assessment represents a significant barrier to
developing and evaluating robust AI systems[30, 31]. Most existing datasets
in design-related domains focus on style classification or aesthetic preference
rather than innovation assessment, limiting the development of systems capa-
ble of identifying truly innovative design solutions. Third, the interpretability
requirements of design evaluation have not been systematically addressed by
existing XAI research. Design professionals require explanations that not only
identify what makes a design innovative but also provide actionable insights for
improvement, a requirement that differs significantly from explanation needs in
other domains. Fourth, the evaluation of AI systems for design assessment has
typically relied on narrow performance metrics that may not capture the full
complexity of design evaluation tasks. Comprehensive evaluation frameworks
that consider accuracy, interpretability, user acceptance, and practical utility
are needed to properly assess the effectiveness of design evaluation systems.

These gaps collectively represent significant opportunities for advancing
the state-of-the-art in computational design assessment. The development
of comprehensive, interpretable AI systems specifically designed for design
innovation evaluation could address critical needs in design education, cre-
ative industries, and innovation management while advancing fundamental
understanding of computational creativity and aesthetic assessment.

3 Methodology and System Design
3.1 Problem Formulation and System Architecture
The automated design innovation assessment problem can be formally defined
as a multiclass classification task where the objective is to map design
worksD = d1, d2, ..., dn to innovation categories I = i1, i2, ..., ik while simulta-
neously providing interpretable explanations for classification decisions. Each
di design work is represented as a high-dimensional visual input combined with
contextual metadata, and each category of innovation ij represents a differ-
ent level of creative novelty and design excellence. The system must optimize
both classification accuracy and explanation quality to meet the dual require-
ments of performance and interpretability essential for practical deployment in
professional design contexts. Our proposed framework adopts a hybrid archi-
tecture that synergizes the representational power of deep convolutional neural
networks with the interpretability and robustness of traditional machine learn-
ing classifiers. The system architecture comprises five primary components,as
the following five reasons. (1) A comprehensive data preprocessing pipeline
that standardizes and enhances input design images;

(2) A DenseNet-based feature extraction module that captures multi-scale
visual patterns and design characteristics;

(3) A Support Vector Machine classifier that performs robust innovation
assessment based on extracted features;
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(4) An integrated explainability module that employs multiple XAI
techniques to generate comprehensive explanations;

(5) A post-processing and visualization system that presents results in
formats suitable for design professionals.

Architecture design prioritizes modularity and extensibility to facilitate
adaptation to different design domains and evaluation criteria. Each com-
ponent operates independently while maintaining well-defined interfaces that
enable seamless integration and modification. This modular approach allows
systematic evaluation of individual components and facilitates future enhance-
ments or domain-specific customizations without requiring a complete system
redesign.

3.2 Data Collection and Preprocessing Pipeline
The foundation of our approach rests upon a comprehensive dataset of design
works spanning multiple creative domains, each expertly annotated for inno-
vation level and quality dimensions. The dataset construction process involved
systematic collection of design works from established repositories, design com-
petitions, educational institutions, and professional portfolios to ensure broad
representation of design styles, cultural contexts, and innovation levels. The
final dataset comprises 5,247 design works distributed across four primary
categories: product design (1,836 works, 35%), graphic design (1,312 works,
25%), architectural design (1,049 works, 20%), and user interface design (1,050
works, 20%).

Expert annotation was performed by a panel of 15 design professionals
with an average of 12 years of industry experience in the represented design
domains. Each design work was independently evaluated by three experts using
a structured assessment protocol that considered five primary dimensions:
innovation level (scale 1-5), aesthetic quality (scale 1-5), functional effective-
ness (scale 1-5), originality (scale 1-5) and market relevance (scale 1-5). The
reliability between raters was evaluated using the Fleiss kappa, achieving
K = 0.87, indicating substantial agreement among the evaluators. Disagree-
ments were resolved through structured discussion sessions that resulted in
consensus ratings for all design works.

The preprocessing pipeline implements a series of standardization and
enhancement operations designed to optimize input data for subsequent
feature extraction while preserving essential design characteristics. Initial
preprocessing involves image standardization to a consistent resolution of
512 × 512 pixels using bicubic interpolation to maintain visual quality during
resizing operations. Color space normalization is applied to ensure consistent
color representation across different source formats and display conditions,
with conversion to the sRGB color space and histogram equalization to
enhance contrast and visual clarity.

Background removal and region-of-interest extraction are performed using
a combination of edge detection algorithms and semantic segmentation tech-
niques to isolate primary design elements from extraneous background content.
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This process employs a modified U-Net architecture trained specifically on
design images to achieve accurate segmentation of design elements while pre-
serving important contextual information. The segmentation process achieves
an average IoU of 0.92 in different design categories, ensuring high-quality
isolation of relevant design content.

Data enhancement techniques are strategically applied to increase dataset
diversity and improve model robustness without compromising design
integrity. Augmentation operations include rotation ( ±15 degrees), scaling
(0.9–1.1×), horizontal flipping (where appropriate for design symmetry), and
subtle color adjustments (±10% saturation and brightness). These enhance-
ments are carefully controlled to maintain the authenticity of the design while
providing sufficient variation to prevent overfitting and improve generalization
performance.

3.3 Hybrid Deep Learning Architecture
The feature extraction component of our framework employs DenseNet201,
a densely connected convolutional neural network architecture that pro-
vides superior feature learning capabilities through its innovative connectivity
pattern. DenseNet201 was selected based on comprehensive comparative
analysis with alternative architectures including ResNet152, EfficientNet-B7,
and Vision Transformer variants. The selection criteria emphasized fea-
ture richness, computational efficiency, and transfer learning effectiveness for
design-related visual patterns.

DenseNet201’s dense connectivity pattern, where each layer receives fea-
ture maps from all preceding layers, enables efficient feature reuse and gradient
flow that is particularly beneficial for capturing the complex visual relation-
ships inherent in design evaluation. The architecture’s ability to learn features
at multiple scales and abstraction levels makes it well-suited for identifying
both fine-grained design details and high-level compositional patterns that
contribute to innovation assessment.

The pre-trained DenseNet201 model, initially trained on ImageNet, under-
goes domain adaptation through fine-tuning on our design dataset. The
fine-tuning process employs a progressive unfreezing strategy where initial
layers remain frozen to preserve low-level visual features while higher lay-
ers are gradually unfrozen to enable learning of design-specific patterns.
This approach balances the benefits of transfer learning with the need for
domain-specific feature adaptation.

Feature extraction is performed at multiple levels of the DenseNet201
architecture to capture design characteristics at different scales and abstrac-
tion levels. Primary features are extracted from the final dense block (2048
dimensions), providing high- level semantic representations of design con-
tent. Additional features are extracted from intermediate dense blocks to
capture mid-level patterns and compositional relationships. The multi-level
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feature extraction approach results in a comprehensive 4,096-dimensional fea-
ture vector that encodes both detailed visual elements and abstract design
principles.

The Support Vector Machine classifier was selected for the final classifica-
tion stage based on its proven robustness, interpretability, and effectiveness
with high-dimensional feature spaces. SVM’s ability to find optimal decision
boundaries in complex feature spaces makes it particularly suitable for design
evaluation tasks where class boundaries may be subtle and non-linear. The
classifier employs a Radial Basis Function (RBF) kernel with parameters opti-
mized through grid search cross-validation to achieve optimal performance
across different design categories.

Multi-class classification is implemented using a one-versus-rest strategy
that trains separate binary classifiers for each innovation level, enabling fine-
grained assessment of design innovation while maintaining computational
efficiency.

The SVM implementation includes class balancing techniques to address
potential imbalances in innovation level distribution and ensure fair evaluation
across all categories.

3.4 Multi-Dimensional Evaluation Framework
Our framework implements a comprehensive multi-dimensional evaluation
approach that assesses design works across five critical dimensions: innova-
tion level, aesthetic quality, functional effectiveness, originality, and market
relevance. This multi-dimensional approach recognizes that design excellence
encompasses multiple facets that must be considered holistically to provide
meaningful assessment of creative works.

Innovation level assessment focuses on identifying novel design solutions,
creative problem-solving approaches, and breakthrough concepts that advance
the state-of-the-art in their respective domains. The evaluation considers both
incremental innovations that improve existing solutions and radical innova-
tions that introduce entirely new paradigms or approaches. Feature patterns
associated with innovation include unusual compositional arrangements, novel
material applications, creative functional integrations, and unique aesthetic
expressions that distinguish innovative works from conventional designs.

Aesthetic quality evaluation encompasses visual appeal, compositional har-
mony, color relationships, and overall visual impact. The assessment considers
established design principles including balance, proportion, contrast, rhythm,
and unity while recognizing that innovative designs may deliberately challenge
conventional aesthetic norms. Machine learning models are trained to recog-
nize aesthetic patterns that correlate with expert assessments of visual quality
across different design domains and cultural contexts.

Functional effectiveness assessment evaluates how well design solutions
address their intended purposes and user requirements. This dimension con-
siders usability, ergonomics, performance characteristics, and practical utility
as key indicators of design quality. For product designs, functional assessment
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includes consideration of manufacturing feasibility, material efficiency, and
user interaction quality. For graphic designs, functional assessment focuses on
communication effectiveness, information hierarchy, and visual clarity.

Originality evaluation identifies unique design elements, creative
approaches, and novel solutions that distinguish works from existing designs in
their domains. The assessment employs similarity analysis techniques to com-
pare new designs against established design databases, identifying distinctive
features and creative departures from conventional approaches. Originality
scoring considers both visual uniqueness and conceptual novelty to provide
comprehensive assessment of creative contribution.

Market relevance assessment evaluates the commercial viability, user
appeal, and market potential of design solutions. This dimension considers
target audience alignment, market trends, competitive positioning, and com-
mercial feasibility as indicators of design success potential. The evaluation
recognizes that market relevance may vary across different contexts and time
periods, requiring adaptive assessment criteria that consider contemporary
market conditions and emerging trends.

3.5 Explainable AI Integration
The explainability component of our framework integrates three complemen-
tary XAI techniques to provide comprehensive interpretability at different
levels of granularity and perspective. This multi-technique approach recog-
nizes that different stakeholders may require different types of explanations
and that comprehensive understanding often requires multiple complementary
viewpoints.

Gradient-weighted Class Activation Mapping (Grad-CAM) provides intu-
itive visual explanations by generating heatmaps that highlight image regions
most influential in classification decisions. Our Grad-CAM implementation
focuses on the final convolutional layers of the DenseNet201 architecture to
identify high-level design features that contribute to innovation assessment.
The technique generates class- specific activation maps that show which design
elements most strongly support

particular innovation classifications, enabling design professionals to under-
stand which aspects of their work are perceived as innovative or conventional.

The Grad-CAM implementation includes several enhancements specifically
designed for design evaluation applications. Multi-scale analysis generates acti-
vation maps at different resolution levels to capture both fine-grained details
and broad compositional patterns. Temporal consistency analysis ensures that
explanations remain stable across similar design variations, providing reli-
able interpretability for design iteration and refinement processes. Interactive
visualization tools enable users to explore activation maps at different thresh-
old levels and overlay explanations on original design images for intuitive
understanding.

Integrated Gradients provides more precise attribution analysis by com-
puting feature importance scores along paths from baseline inputs to actual
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design inputs. This technique addresses some limitations of basic gradient
methods by providing more stable and theoretically grounded explanations
that better capture the contribution of individual design elements to overall
innovation assessment. The implementation employs carefully selected base-
line images that represent neutral or conventional design examples, enabling
meaningful comparison and attribution analysis.

The Integrated Gradients implementation includes adaptive baseline selec-
tion that chooses appropriate reference points based on design category and
context. Path integration employs multiple interpolation strategies to ensure
robust attribution computation across different design types and visual charac-
teristics. The resulting attribution maps provide pixel-level importance scores
that can be aggregated to understand the contribution of specific design
elements, color choices, compositional decisions, and other visual factors to
innovation assessment.

Layer-wise Relevance Propagation (LRP) offers the most detailed expla-
nations by propagating relevance scores backward through all network layers
according to specific conservation principles. This technique provides insights
into how different network components contribute to final decisions, enabling
understanding of the hierarchical feature processing that leads to innova-
tion assessment. The LRP implementation employs epsilon-rule propagation
for robust handling of near-zero activations and gamma-rule propagation for
enhanced focus on positive contributions.

The LRP analysis generates comprehensive relevance maps that show how
different design features are processed and combined throughout the network
hierarchy. Layer-specific relevance analysis reveals which network levels are
most important for different types of design evaluation, providing insights
into the computational processes underlying innovation assessment. Feature
interaction analysis identifies how different design elements combine to create
overall innovation impressions, supporting understanding of design synergies
and compositional effects.

3.6 Evaluation Metrics and Validation Framework
The evaluation framework employs a comprehensive set of metrics that assess
both classification performance and explanation quality to ensure that the
system meets the dual requirements of accuracy and interpretability. Classi-
fication performance is evaluated using standard metrics including accuracy,
precision, recall, F1-score, and area under the ROC curve, computed sep-
arately for each innovation level and design category to provide detailed
performance analysis.

Explanation quality assessment employs both quantitative and qualitative
metrics designed specifically for design evaluation contexts. Localization accu-
racy measures how well explanation techniques identify design elements that
experts consider important for innovation assessment. This metric is computed
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by comparing explanation heatmaps with expert-annotated regions of inter-
est, using intersection- over-union (IoU) scores to quantify spatial alignment
between computational and human explanations.

Expert acceptance evaluation involves structured assessment sessions
where design professionals evaluate the quality, usefulness, and accuracy of
generated explanations. Experts rate explanations on multiple dimensions
including visual clarity, technical accuracy, actionable insights, and overall
utility for design improvement. These assessments provide crucial validation
of explanation quality from the perspective of intended users.

User study protocols evaluate system effectiveness in realistic usage sce-
narios through controlled experiments with design professionals and students.
Participants complete design evaluation tasks using both traditional meth-
ods and our AI-assisted approach, with performance measured in terms of
evaluation accuracy, time efficiency, consistency, and user satisfaction. These
studies provide essential evidence of practical utility and user acceptance in
professional contexts.

4 Experiments and Results
4.1 Experimental Setup and Dataset Characteristics
Our comprehensive evaluation employed a carefully curated dataset of 5,247
design works spanning four primary creative domains: product design (1,836
works, 35%), graphic design (1,320 works, 25%), architectural design (1,054
works, 20%), and user interface/user experience design (1,037 works, 20%).
This distribution reflects the relative prevalence and importance of these
design categories in contemporary creative industries while ensuring sufficient
representation for robust statistical analysis across all domains.

The dataset construction process involved systematic collection from
established design repositories, international design competitions, leading
educational institutions, and professional portfolios to ensure broad repre-
sentation of design styles, cultural contexts, innovation levels, and quality
standards. Each design work underwent rigorous expert evaluation by a panel
of 15 design professionals with an average of 12 years of industry experience
across the represented domains. The expert annotation protocol employed a
structured five-dimensional assessment framework evaluating innovation level,
aesthetic quality, functional effectiveness, originality, and market relevance on
standardized 1-5 scales.

Inter-rater reliability analysis demonstrated substantial agreement among
evaluators, with Fleiss’ kappa coefficient K = 0.87, significantly exceeding the
threshold for reliable expert consensus (K > 0.80). Innovation level distri-
bution across the dataset reflected realistic patterns observed in professional
design contexts, with 15% low innovation works, 25% medium innovation,
35% high innovation, 20% very high innovation, and 5% breakthrough inno-
vation designs. This distribution enables comprehensive evaluation of system
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performance across the full spectrum of design innovation while maintain-
ing sufficient samples in each category for robust statistical analysis on the
figure(Fig.1).

Fig. 1 System architecture overview. Comprehensive framework integrating preprocessing
pipeline, DenseNet201 feature extraction, SVM classification, and multi- technique XAI
module for interpretable design innovation assessment.

5 Model Architecture Performance and
Ablation Analysis

Comprehensive ablation studies were conducted to validate architectural
choices and optimize system performance across different design domains and
evaluation criteria. The studies compared six different deep learning architec-
tures (DenseNet121, DenseNet169, DenseNet201, ResNet152, EfficientNet-B7,
VGG16) combined with multiple classification approaches (SVM with RBF
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kernel, Random Forest, XGBoost,Softmax classifier) to identify the optimal
configuration for design innovation assessment.

Fig. 2 Dataset characteristics and innovation distribution. a, Distribution of design works
across four primary categories showing balanced representation. b, Innovation level distri-
bution reflecting realistic patterns in professional design contexts. c, Quality metric scores
across innovation levels demonstrating clear differentiation. d, Innovation score distributions
showing distinct patterns for different innovation categories.

The DenseNet201-SVM combination demonstrated superior performance
across all evaluation metrics, achieving 97.8% accuracy, 96.4% precision,
97.1% recall, and 96.7% F1-score. This performance represents a significant
improvement over alternative architectures, with DenseNet201 outperforming
DenseNet169 by 1.7% in accuracy and DenseNet121 by 3.5%. The superior-
ity of DenseNet201 can be attributed to its dense connectivity pattern that
enables efficient feature reuse and gradient flow, particularly beneficial for
capturing the complex visual relationships inherent in design evaluation tasks.

Table 1 Model performance comparison across different architectures.

Model Architecture Accuracy Precision Recall F1-Score Training Time (h)

DenseNet121+SVM 0.943 0.285 0.941 0.939 4.2
DenseNet169+SVM 0.961 0.957 0.959 0.958 5.8
DenseNet201+SVM 0.978 0.964 0.971 0.967 7.3
ResNet152+SVM 0.952 0.948 0.950 0.949 6.1
EfficientNet+SVM 0.967 0.962 0.965 0.963 8.9
VGG16+SVM 0.921 0.915 0.918 0.916 3.1
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The SVM classifier consistently outperformed alternative classification
approaches across all feature extraction architectures. Compared to Softmax
classification, SVM demonstrated 2.3% higher accuracy and 3.1% better F1-
score, while Random Forest and XGBoost achieved 94.2% and 95.7% accuracy
respectively. The superior performance of SVM can be attributed to its robust
handling of high-dimensional feature spaces and effective decision boundary
optimization in complex design evaluation scenarios.

Fig. 3 Model architecture performance analysis. a, Comprehensive comparison of perfor-
mance metrics across different model architectures showing DenseNet201+SVM superiority.
b, Training time versus accuracy trade-off analysis revealing optimal efficiency-performance
balance.

5.1 Explainable AI Technique Evaluation
Systematic evaluation of explainability techniques revealed significant differ-
ences in interpretability quality, computational efficiency, and user acceptance
across the three implemented XAI methods. Layer-wise Relevance Propagation
(LRP) demonstrated superior performance across multiple evaluation dimen-
sions, achieving 95.6% localization accuracy in identifying design elements that
experts consider important for innovation assessment. This represents a 6.4%
improvement over Grad-CAM (89.2%) and 3.9% improvement over Integrated
Gradients (91.7%).

Table 2 XAI technique evaluation results. LRP achieves highest performance across
interpretability metrics while maintaining reasonable computational efficiency.

XAId Localization Expert Computation Visual Actionable
Method Accuracy Acceptance Time (ms) VClarity Insights

Grad-CAM 0.892 0.912 45 4.3 4.1
Integrated 0.917 0.887 120 3.9 4.4
Gradients
LRP 0.956 0.934 89 4.6 4.7
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Expert acceptance evaluation involved structured assessment sessions with
30 design professionals who evaluated explanation quality across multiple
dimensions including visual clarity, technical accuracy, actionable insights, and
overall utility for design improvement. LRP achieved the highest expert accep-
tance rate (93.4%), followed by Grad-CAM (91.2%) and Integrated Gradients
(88.7%). The superior acceptance of LRP explanations can be attributed to
their fine-grained detail and hierarchical structure that aligns well with design
professionals’ analytical thinking processes.

Fig. 4 XAI technique comparison and evaluation. a, Localization accuracy showing LRP’s
superior performance in identifying relevant design elements. b, Expert acceptance rates
across different XAI methods. c, Computational efficiency comparison. d, User evaluation
scores for visual clarity and actionable insights.

User studies involving 120 professional designers demonstrated that LRP
explanations provided the most actionable insights for design improvement,
with average ratings of 4.7/5.0 compared to 4.4/5.0 for Integrated Gradients
and 4.1/5.0 for Grad-CAM. Visual clarity assessments similarly favored LRP
(4.6/5.0) over Grad-CAM (4.3/5.0) and Integrated Gradients (3.9/5.0), indi-
cating that the detailed hierarchical explanations provided by LRP are more
intuitive and useful for design professionals.

5.2 Evaluation Efficiency and Consistency Analysis
Comparative analysis of evaluation efficiency revealed dramatic improvements
in both time requirements and consistency when employing our AI-assisted
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framework compared to traditional expert-based evaluation methods. Tradi-
tional expert evaluation required an average of 120.3 minutes (±25.4minutes)
per design work, involving multiple expert assessors and consensus-building
processes. In contrast, our

AI-assisted evaluation completed assessments in an average of 12.1 min-
utes (±3.2minutes), representing a 90% reduction in evaluation time while
maintaining superior consistency and reliability.

Fig. 5 Evaluation efficiency and consistency analysis. a, Dramatic reduction in evaluation
time from traditional expert review (120 minutes) to AI-assisted evaluation (12 minutes).
b, Significant improvement in inter-rater agreement from 67% (traditional) to 92% (AI-
assisted).

Inter-rater agreement analysis demonstrated substantial improvements in
evaluation consistency, with AI-assisted evaluation achieving 92.3% agree-
ment compared to 67.1% for traditional expert evaluation. This improvement
in consistency can be attributed to the objective, standardized evaluation
criteria employed by the AI system, which eliminates subjective biases and
inconsistencies that commonly affect human evaluators. The enhanced consis-
tency is particularly valuable in educational contexts where fair and reliable
assessment is essential for student development and in commercial contexts
where consistent quality standards are critical for business decisions. Cost-
effectiveness analysis revealed that AI-assisted evaluation reduces evaluation
costs by approximately 78% compared to traditional methods, primarily
through reduced expert time requirements and improved process efficiency.
The system enables scalable evaluation of large design portfolios that would
be prohibitively expensive using traditional expert-based approaches, open-
ing new possibilities for comprehensive design assessment in educational
institutions, design competitions, and commercial development processes.

5.3 Domain-Specific Performance Analysis
Performance analysis across different design domains revealed consistent
effectiveness while highlighting domain-specific characteristics that influence
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evaluation accuracy and interpretability. Product design evaluation achieved
the highest accuracy (98.2%), attributed to the clear functional require-
ments and established design principles that facilitate objective assessment.
Graphic design evaluation achieved 97.6% accuracy, with particular strength
in assessing visual composition and aesthetic innovation. Architectural design
evaluation reached 97.3% accuracy, demonstrating effective handling of com-
plex spatial relationships and structural considerations. UI/UX design eval-
uation achieved 98.1% accuracy, benefiting from clear usability criteria and
established interaction design principles.

Fig. 6 Innovation score analysis across design categories. a, Box plot comparison showing
innovation score distributions across different design domains with consistent performance.
b, Correlation heatmap revealing relationships between quality dimensions and overall inno-
vation assessment.

Innovation score analysis revealed strong correlations between different
quality dimensions, with originality showing the highest correlation with
overall innovation scores (r = 0.84), followed by aesthetic quality(r =
0.78), functional effectiveness (r = 0.72), and market relevance (r = 0.69).
These correlations validate the multi-dimensional evaluation framework and
demonstrate that innovation assessment requires consideration of multiple
complementary factors rather than relying on single evaluation criteria.

Table 3 Domain-specific performance analysis. Consistent high performance across all
design categories with slight variations reflecting domain characteristics.

Design Sample Mean Innovation Std Accuracy F1
Category Size Score Deviation -Score

Product Design 1,836 67.4 18.2 0.982 0.971
Graphic Design 1,320 64.8 19.7 0.976 0.968
Architectural Design 1,054 69.1 17.5 0.973 0.965
UI/UX Design 1,037 66.2 18.9 0.981 0.969

Cross-domain validation experiments demonstrated robust generalization
capabilities, with models trained on one design domain achieving 89-94%
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accuracy when applied to other domains without additional training. This
cross-domain effectiveness suggests that the framework captures fundamental
design principles that transcend specific domain boundaries, enabling flexible
application across diverse creative contexts.

5.4 User Study Results and Professional Validation
Comprehensive user studies involving 30 design experts and 120 profes-
sional designers provided crucial validation of system effectiveness in realistic
usage scenarios. Expert evaluation sessions employed controlled experimental
protocols where participants completed design assessment tasks using both
traditional methods and our AI-assisted approach. Performance was mea-
sured across multiple dimensions including evaluation accuracy, time efficiency,
consistency, user satisfaction, and perceived utility for professional practice.

Results demonstrated significant improvements across all measured dimen-
sions when using AI-assisted evaluation. Assessment accuracy improved by an
average of 15.3% compared to individual expert evaluation, with particularly
notable improvements for less experienced evaluators (22.7% improvement)
compared to senior experts (8.9% improvement). This pattern suggests that
the AI system provides valuable support for developing design evaluation
expertise while augmenting the capabilities of experienced professionals.

Table 4 User study results comparing traditional and AI-assisted evaluation methods.

Evaluation Metric Traditional Method AI-Assisted Method Improvement

Evaluation Time (minutes) 120.3 ± 25.4 12.1 ± 3.2 90.0%
Inter-rater Agreement 0.671 ± 0.142 0.923 ± 0.067 37.6%
Assessment Accuracy 0.743 ± 0.089 0.856 ± 0.054 15.2%
User Satisfaction (1-5) 3.2 ± 0.8 4.3 ± 0.6 34.4%
Perceived Utility (1-5) 3.1 ± 0.9 4.4 ± 0.5 41.9%

Significant improvements across all measured dimensions demonstrate
practical utility and user acceptance. Professional designer surveys revealed
high levels of satisfaction with the AI-assisted evaluation system, with 87% of
participants indicating they would use the system in their professional prac-
tice and 92% recommending it to colleagues. Qualitative feedback highlighted
particular appreciation for the interpretable explanations that provide action-
able insights for design improvement, with many participants noting that the
XAI visualizations helped them identify design elements they had not previ-
ously considered. Educational validation studies conducted with 200 design
students across multiple institutions demonstrated significant learning bene-
fits when using the AI-assisted evaluation system. Students using the system
showed 28% faster improvement in design quality over a semester compared to
control groups using traditional feedback methods. The interpretable expla-
nations were particularly valuable for helping students understand design
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principles and develop critical evaluation skills that transfer to independent
design practice.

6 Analysis and Discussion
Theoretical Implications and Methodological Contributions The results of this
study establish several important theoretical contributions to the intersection
of artificial intelligence and design evaluation research. Most significantly, our
findings demonstrate that hybrid AI architectures combining deep learning
feature

extraction with traditional machine learning classification can achieve
superior performance compared to end-to-end deep learning approaches in
design evaluation contexts. The 97.8% accuracy achieved by our DenseNet201-
SVM combination represents a substantial advancement over previous compu-
tational design evaluation systems, which typically achieve 85-92% accuracy
in comparable tasks[32]. The superior performance of the hybrid approach
can be attributed to several complementary factors. DenseNet201’s dense
connectivity pattern enables comprehensive feature extraction that captures
both fine-grained design details and high-level compositional relationships
essential for innovation assessment. The SVM classifier’s robust handling of
high-dimensional feature spaces and effective decision boundary optimiza-
tion proves particularly valuable in design evaluation scenarios where class
boundaries may be subtle and complex. This combination leverages the rep-
resentational power of deep learning while maintaining the interpretability
and robustness advantages of traditional machine learning approaches. Our
systematic evaluation of explainable AI techniques provides the first com-
prehensive comparison of XAI methods specifically for design evaluation
applications. The superior performance of Layer-wise Relevance Propagation
(95.6% localization accuracy, 93.4% expert acceptance) over Grad-CAM and
Integrated Gradients establishes LRP as the preferred explainability technique
for design assessment contexts. This finding has important implications for
the broader application of XAI in creative domains, where detailed, hierarchi-
cal explanations align better with professional analytical thinking processes
than simpler attention-based visualizations. The multi-dimensional evalua-
tion framework developed in this study advances theoretical understanding of
design innovation by providing a computational model that captures the com-
plex, interrelated factors that contribute to creative excellence. The strong
correlations observed between originality and overall innovation scores (r =
0.84) validate theoretical models of creativity that emphasize novelty as a
fundamental component of innovation, while the significant contributions of
aesthetic quality (r = 0.78) and functional effectiveness (r = 0.72) confirm the
importance of holistic evaluation approaches that consider multiple quality
dimensions simultaneously.
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6.1 Practical Applications and Industry Impact
The practical implications of this research extend across multiple domains
within the creative industries, offering transformative potential for design
education, professional practice, and innovation management. In educational
contexts, the system’s ability to provide consistent, detailed feedback on
student work addresses a critical need for scalable, objective assessment in
design programs where traditional evaluation methods are often constrained
by faculty time limitations and subjective variability. The 90% reduction in
evaluation time achieved by our AI-assisted approach enables comprehensive
assessment of large student portfolios that would be prohibitively time-
consuming using traditional methods. More importantly, the interpretable
explanations provided by the XAI components offer students actionable
insights for improvement that go beyond simple quality scores. The 28%
faster improvement in design quality observed in educational validation stud-
ies demonstrates that AI-assisted evaluation can accelerate learning and skill
development in ways that traditional feedback methods cannot match. For
professional design practice, the system offers significant value in multiple
application scenarios. Design agencies can employ the framework for rapid
initial assessment of creative concepts, enabling more efficient allocation of
expert review time to the most promising ideas. The system’s consistency
and objectivity make it particularly valuable for design competitions and
awards programs, where fair and reliable evaluation is essential for maintaining
credibility and participant satisfaction[33]. The framework’s cross-domain gen-
eralization capabilities (89-94% accuracy when applied across different design
domains) suggest broad applicability across diverse creative contexts. This
flexibility enables organizations to deploy a single evaluation system across
multiple design disciplines, reducing training requirements and maintenance
overhead while ensuring consistent quality standards across different creative
teams and projects. Corporate innovation management represents another
significant application domain, where the system can support systematic eval-
uation of design proposals, patent applications, and product development
concepts. The objective, quantifiable assessment provided by the framework
enables data-driven decision-making in innovation investment and resource
allocation, potentially improving the efficiency and effectiveness of corporate
R&D processes.

6.2 Limitations and Methodological Considerations
Despite the significant advances demonstrated in this study, several limitations
must be acknowledged that constrain the generalizability and applicability
of our findings. The dataset, while comprehensive within its scope, reflects
primarily Western design traditions and aesthetic preferences, potentially lim-
iting the framework’s effectiveness in evaluating designs from different cultural
contexts or aesthetic traditions. Cross- cultural validation studies would be
necessary to establish the framework’s applicability in global design contexts
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where different aesthetic principles and innovation criteria may apply. The
expert annotation process, while achieving high inter-rater reliability (K =
0.87), remains fundamentally subjective and may reflect the particular per-
spectives and biases of the expert panel employed in this study. The 15 design
professionals involved in annotation, despite their extensive experience, repre-
sent a limited sample of the broader design community and may not capture
the full diversity of professional perspectives on design innovation and quality.
The temporal stability of the evaluation framework presents another important
consideration. Design trends, aesthetic preferences, and innovation criteria
evolve continuously, potentially requiring periodic retraining or recalibration
of the system to maintain relevance and accuracy. The framework’s ability to
adapt to changing design contexts and emerging aesthetic movements remains
to be established through longitudinal studies. Technical limitations include
the system’s current focus on visual design evaluation, which may not fully
capture non-visual aspects of design innovation such as user experience, emo-
tional impact, or cultural significance. While our multi-dimensional evaluation
framework addresses some of these concerns through functional effectiveness
and market relevance assessments, more comprehensive evaluation approaches
might require integration of additional data sources and evaluation modali-
ties. The computational requirements of the framework, while reasonable for
research applications, may present barriers to widespread adoption in resource-
constrained environments. The DenseNet201 architecture requires significant
GPU memory and

processing power, potentially limiting accessibility for smaller design
organizations or educational institutions with limited computational resources.

6.3 Future Research Directions and Technological
Evolution

The findings of this study open several promising avenues for future research
that could further advance the state-of-the-art in computational design eval-
uation. Multi- modal evaluation approaches that integrate visual analysis
with textual descriptions, user feedback, and contextual information represent
a particularly promising direction for enhancing evaluation comprehensive-
ness and accuracy. The development of adaptive evaluation frameworks that
can automatically adjust assessment criteria based on design domain, cul-
tural context, or temporal trends would address current limitations related to
generalizability and temporal stability. Machine learning approaches for meta-
learning evaluation criteria could enable systems that continuously improve
their assessment capabilities through exposure to new design examples and
expert feedback. Real-time evaluation capabilities represent another important
research direction, enabling integration of design assessment into interactive
design tools and creative workflows. Such capabilities would support itera-
tive design processes by providing immediate feedback on design modifications
and enabling rapid exploration of creative alternatives. The extension of
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explainable AI techniques to provide not only explanations of current assess-
ments but also generative suggestions for design improvement represents a
significant opportunity for advancing AI-assisted creativity. A system that
can identify specific design elements that need to be modified and propose
improvement strategies will provide greater value for design professionals and
students. Collaborative evaluation frameworks that combine AI assessment
with human expertise in structured ways could leverage the complementary
strengths of computational and human evaluation approaches. Such hybrid
systems might achieve even higher accuracy and acceptance than purely auto-
mated approaches while maintaining the efficiency advantages of AI-assisted
evaluation. The development of domain-specific evaluation models optimized
for particular design disciplines could improve accuracy and relevance com-
pared to general- purpose frameworks. Specialized models for product design,
architectural design, or user interface design could incorporate domain-specific
knowledge and evaluation criteria that enhance assessment quality within
particular creative contexts.

6.4 Broader Implications for AI and Creativity Research
This research contributes to broader understanding of the relationship between
artificial intelligence and human creativity, demonstrating that AI systems can
effectively evaluate and interpret creative works when designed with appropri-
ate attention to domain-specific requirements and interpretability needs. The
success of our explainable AI approach suggests that transparency and inter-
pretability are not merely desirable features but essential requirements for AI
systems operating in creative domains where human understanding and accep-
tance are critical . The multi-dimensional evaluation framework developed in
this study provides a computational model of design innovation that could
inform broader research on creativity assessment and creative process under-
standing. The quantitative relationships identified between different quality
dimensions offer insights into the structure of creative excellence that could
guide both AI system development and human creativity research. The demon-
strated effectiveness of hybrid AI architectures in creative evaluation contexts
suggests that the future of AI-assisted creativity may lie not in replacing
human judgment but in augmenting and enhancing human creative capabili-
ties through transparent, interpretable computational tools. This perspective
aligns with emerging paradigms of human-AI collaboration that emphasize
complementary strengths rather than competitive replacement. The educa-
tional applications demonstrated in this study highlight the potential for AI
systems to democratize access to high-quality creative education by providing
consistent, detailed feedback that supplements traditional instruction meth-
ods. This capability could be particularly valuable in addressing educational
inequalities and expanding access to quality design education in underserved
communities. The framework’s success in achieving both high accuracy and
high interpretability challenges common assumptions about trade-offs between
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AI system performance and explainability. Our results suggest that care-
fully designed AI systems can achieve superior performance precisely because
they incorporate interpretability considerations from the outset, rather than
treating explainability as a post-hoc addition to opaque models

7 Conclusion
This research presents a comprehensive explainable AI framework for auto-
mated design innovation assessment that successfully addresses critical chal-
lenges in computational creativity evaluation while establishing new standards
for transparency and interpretability in AI-assisted design analysis. Through
the systematic integration of advanced deep learning architectures, robust
machine learning classification, and multiple explainable AI techniques, we
have developed a system that achieves exceptional performance (97.8% accu-
racy) while providing interpretable explanations that meet the practical needs
of design professionals and educators. The hybrid DenseNet201-SVM architec-
ture demonstrates that combining the representational power of deep learning
with the robustness and interpretability of traditional machine learning can
yield superior results compared to end-to-end deep learning approaches in
design evaluation contexts. This finding has important implications for AI sys-
tem design in creative domains, suggesting that hybrid approaches may be
more effective than purely deep learning solutions when interpretability and
professional acceptance are critical requirements. Our systematic evaluation
of explainable AI techniques establishes Layer-wise Relevance Propagation
as the most effective approach for design evaluation applications, achieving
95.6% localization accuracy and 93.4% expert acceptance. This finding pro-
vides crucial guidance for implementing interpretable AI systems in creative
contexts and demonstrates that detailed, hierarchical explanations align better
with professional analytical thinking processes than simpler attention-based
visualizations. The multi-dimensional evaluation framework developed in this
study advances theoretical understanding of design innovation by providing
a computational model that captures the complex, interrelated factors con-
tributing to creative excellence. The strong correlations identified between
different quality dimensions validate holistic approaches to design assessment
while providing quantitative insights into the structure of creative evalu-
ation that can inform both AI system development and design education
practices. Practical validation through comprehensive user studies demon-
strates significant improvements in evaluation efficiency (90% time reduction),
consistency (37.6% improvement in inter-rater agreement), and educational
effectiveness (28% faster student improvement) compared to traditional eval-
uation methods. These results establish clear evidence of practical utility
and user acceptance that supports deployment in professional design con-
texts, educational institutions, and innovation management applications. The
framework’s cross-domain generalization capabilities and consistent perfor-
mance across different design disciplines demonstrate broad applicability that
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extends beyond specific creative domains. This flexibility enables organizations
to deploy unified evaluation systems across diverse design contexts while main-
taining consistent quality standards and reducing training and maintenance
requirements. Looking forward, this research opens several promising direc-
tions for advancing AI- assisted creativity and design evaluation. Multi-modal
evaluation approaches that integrate visual analysis with textual descriptions
and contextual information could further enhance assessment comprehensive-
ness. Adaptive evaluation frameworks that automatically adjust assessment
criteria based on cultural context and temporal trends could address current
limitations related to generalizability. Real-time evaluation capabilities could
enable integration into interactive design tools, supporting iterative creative
processes through immediate feedback and guidance. The broader implica-
tions of this work extend beyond design evaluation to fundamental questions
about the relationship between artificial intelligence and human creativity.
Our results demonstrate that AI systems can effectively evaluate and interpret
creative works when designed with appropriate attention to domain-specific
requirements and interpretability needs. This suggests that the future of AI-
assisted creativity lies not in replacing human judgment but in augmenting
and enhancing human creative capabilities through transparent, interpretable
computational tools. The educational applications demonstrated in this study
highlight the democratizing potential of AI-assisted design evaluation, provid-
ing access to consistent, high-quality feedback that can supplement traditional
instruction methods and address educational inequalities. The framework’s
success in achieving both high accuracy and high interpretability challenges
common assumptions about trade-offs between AI system performance and
explainability, suggesting that carefully designed systems can achieve superior
performance precisely because they incorporate interpretability considerations
from the outset. In conclusion, this research establishes a new paradigm for
AI-assisted design evaluation that combines computational precision with
human-interpretable insights, offering substantial potential for transforming
design education, creative industry workflows, and innovation management
practices. The framework provides a foundation for future research in com-
putational creativity while delivering immediate practical value for design
professionals, educators, and organizations seeking to enhance their creative
evaluation capabilities through transparent, reliable AI assistance.
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