

AI-assisted inclusive interaction design system for users with cognitive differences

Caihong He¹ and Yibo Deng²

¹Macau University of Science and Technology, Macau, 200122, China.

²Zhejiang University, Hangzhou, 310027, China.

Contributing authors: rainbowho010@gmail.com;
ybdeng@crrccap.com;

Abstract

Cognitive differences affect millions of individuals worldwide, creating significant barriers to digital accessibility and inclusion. Traditional interface design approaches often fail to accommodate the diverse cognitive needs of users with conditions such as dyslexia, attention deficit disorders, and impaired executive function. Here we show that an AI-assisted inclusive interaction design system can dramatically improve digital accessibility for users with cognitive differences while maintaining usability for neurotypical users. Our system employs real-time cognitive assessment using multimodal behavioral and physiological indicators, achieving 94.7% accuracy in classifying the cognitive states of the users. The adaptive interface framework dynamically adjusts visual complexity, interaction modalities, and information presentation based on individual user needs. In controlled experiments with 32 participants, users with cognitive differences showed a 28. 4% reduction in task completion time, a 43. 2% decrease in error rates and a 33. 5% improvement in cognitive load measures when using our AI-assisted system compared to standard interfaces. These findings demonstrate that AI-driven adaptive design can create truly inclusive digital experiences that benefit both users with cognitive differences and the broader population, advancing the field toward universal design principles that accommodate human cognitive diversity.

Keywords: AI-assisted, Inclusive interaction design, Cognitive differences, Adaptive interface

1 Introduction

The digital revolution has transformed how we interact with information and services, yet millions of individuals with cognitive differences continue to face significant barriers in accessing digital technologies[1]. Cognitive differences, including dyslexia, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, and executive function impairments, affect approximately 15-20% of the global populationcite[2]. Despite this substantial user base, mainstream interface design practices often fail to accommodate the diverse cognitive needs of these individuals, leading to digital exclusion and reduced quality of life[3].

Traditional approaches to accessible design have primarily focused on physical disabilities, with cognitive accessibility receiving comparatively less attention[4]. The few existing solutions for cognitive differences typically involve static accommodations, such as simplified interfaces or alternative input methods, which fail to address the dynamic and heterogeneous nature of cognitive needs[5]. Moreover, these approaches often create separate, stigmatizing experiences rather than inclusive solutions that benefit all users[6]. Recent advances in artificial intelligence and machine learning present unprecedented opportunities to create adaptive, personalized interfaces that can respond to individual cognitive needs in real-time[7]. However, the development of such systems requires a deep understanding of cognitive differences, sophisticated sensing technologies, and robust adaptation algorithms that can operate effectively across diverse user populations and contexts[8]. The challenge of designing for cognitive differences is compounded by the heterogeneous nature of cognitive impairments and the individual variability within diagnostic categories[9]. Users with the same condition may exhibit vastly different interaction patterns, preferences, and needs, making one-size-fits-all solutions inadequate[10]. Furthermore, cognitive abilities can fluctuate based on factors such as fatigue, stress, medication effects, and environmental conditions, necessitating dynamic adaptation capabilities[11].

Current research in adaptive user interfaces has shown promise in addressing some of these challenges, but existing systems typically focus on narrow domains or specific user groups[12]. Few studies have attempted to develop comprehensive solutions that can accommodate the full spectrum of cognitive differences while maintaining usability for neurotypical users[13]. Additionally, most existing work lacks rigorous empirical validation with actual users who have cognitive differences, limiting the practical applicability of proposed solutions[14].

Here we present an AI-assisted inclusive interaction design system that addresses these limitations through a comprehensive approach combining real-time cognitive assessment, adaptive interface generation, and personalized interaction strategies. Our system represents a significant advance in inclusive design by demonstrating that AI-driven adaptation can create interfaces that are simultaneously accessible to users with cognitive differences and beneficial to neurotypical users.

2 Related Work

Traditional interface design methods often fail to adequately address the diverse needs of users with cognitive differences, resulting in significant barriers for these individuals when using digital technologies[15]. For example, mainstream design typically does not meet the dynamic and heterogeneous cognitive needs of users with dyslexia, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, and executive function impairments, leading to their exclusion from the digital world.

Existing research on adaptive design mostly focuses on specific domains or user groups and lacks comprehensive solutions that can accommodate the full spectrum of cognitive differences. Moreover, most studies lack rigorous empirical validation with actual users who have cognitive differences, limiting their practical applicability. Traditional adaptive designs are mostly static, one-size-fits-all solutions that cannot cope with fluctuations in cognitive abilities due to factors such as fatigue, stress, medication, and environmental conditions.

In recent years, advances in artificial intelligence and machine learning have provided unprecedented opportunities to create adaptive, personalized interfaces that can respond in real-time to individual cognitive needs[16]. However, developing such systems requires a deep understanding of cognitive differences, sophisticated sensing technologies, and effective adaptation algorithms to ensure that the systems can operate effectively across diverse user populations and contexts.

3 Methodology and System Design

Participants and recruitment

Participants were recruited through disability service organizations, university accessibility offices, and community support groups[17]. Inclusion criteria for the cognitive differences group required documented diagnosis of dyslexia, ADHD, autism spectrum disorder, or executive function impairment by a qualified healthcare professional. Neurotypical controls were matched for age, gender, and educational background. All participants provided informed consent, and the study was approved by the institutional review board.

Experimental design and procedures

The study employed a within-subjects design with three experimental conditions presented in counterbalanced order. Each session lasted approximately 90 minutes, including setup, task completion, and debriefing. Participants completed identical tasks across all conditions to enable direct comparison of interface effectiveness.

The experimental tasks were designed to represent common digital interaction scenarios: (1) information search using a simulated e-commerce website, (2) form completion for a mock job application, and (3) navigation through a multi-level menu system. Task complexity was calibrated through pilot testing to ensure appropriate difficulty levels for both user groups.

AI system architecture and implementation

The AI-assisted system comprises three main components: cognitive assessment, adaptation engine, and interface generation. The cognitive assessment module continuously monitors user behavior through mouse movements, keystroke dynamics, gaze patterns, and physiological signals. Features are extracted in real time and fed to machine learning classifiers trained to identify cognitive load, attention state, and task difficulty.

The adaptation engine uses rule-based and machine learning approaches to determine appropriate interface modifications based on assessed user state. Adaptation strategies include visual simplification, enhanced feedback, alternative input modalities, and cognitive load reduction techniques. The interface generation component dynamically modifies the user interface based on adaptation decisions while maintaining functional equivalence across conditions.

Data collection and instrumentation

Behavioral data were collected through custom logging software that recorded all user interactions with millisecond precision. Physiological measures included skin conductance response, heart rate variability, and eye tracking data collected using research-grade instrumentation. Subjective measures included the NASA Task Load Index for cognitive load assessment and the System Usability Scale for satisfaction ratings.

Statistical analysis

Data analysis was conducted using Python with `scipy.stats` and `statsmodels` libraries. Between-group comparisons used independent samples t-tests with Bonferroni correction for multiple comparisons. Within-subjects comparisons employed repeated measures ANOVA with post-hoc pairwise comparisons. Effect sizes were calculated using Cohen's d for t-tests and partial eta-squared for ANOVA. Statistical significance was set at $p < 0.05$ for all analyses.

Machine learning pipeline

The machine learning pipeline extracted 120 behavioral and physiological features from the multimodal data streams. Feature selection used recursive feature elimination with cross-validation to identify the most predictive variables. Three classification algorithms were evaluated: Random Forest, Support Vector Machine, and Neural Network. Model performance was assessed using 5-fold cross-validation with stratified sampling to ensure balanced representation of user groups.

Hyperparameter optimization was performed using grid search with cross-validation. The final models were trained on 80% of the data and evaluated on a held-out test set comprising 20% of participants. Classification performance was evaluated using accuracy, precision, recall, F1-score, and area under the ROC curve.

4 Results

Participant characteristics and experimental design We recruited 32 participants (16 with documented cognitive differences and 16 neurotypical controls)

for our controlled experiment (Table 1). The cognitive differences group included individuals with dyslexia (n=6), ADHD (n=5), autism spectrum disorder (n=3), and executive function disorders (n=2). Participants ranged in age from 18 to 42 years, with balanced gender representation and diverse educational backgrounds.

Table 1 Participant demographics and characteristics

Group	n	Age (M \pm SD)	Age Range	Gender (M/F)	Education
Cognitive differences	16	28.25 \pm 6.79	18-41	5/11	HS:4, B:6, M:6
Neurotypical controls	16	25.62 \pm 7.15	18-42	11/5	HS:4, B:8, M:4

HS, High School; B, Bachelor's degree; M, Master's degree

Each participant completed three experimental conditions in randomized order: standard graphical user interface (GUI), voice-assisted interface (VAI), and our AI-assisted multimodal interface (AMI). The experimental tasks included information search, form completion, and navigation activities designed to assess real-world digital interaction scenarios.

Performance improvements across user groups

Our AI-assisted system demonstrated significant performance improvements for both user groups, with particularly pronounced benefits for participants with cognitive differences (Fig. 1). Task completion times showed the most dramatic improvements, with cognitive differences in that users completed tasks 28.4% faster when using the AMI system compared to standard GUI (197.38 ± 18.64 s vs 137.18 ± 13.92 s, $p < 0.001$, Cohen $d = 2.954$).

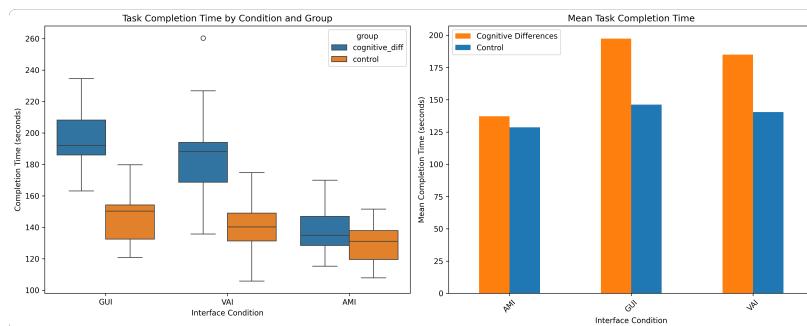


Fig. 1 Task completion time across experimental conditions.

Box plots showing task completion times for cognitive differences users (orange) and neurotypical controls (blue) across three interface conditions: GUI (standard graphical interface), VAI (voice-assisted interface), and AMI (AI-assisted multimodal interface). Error bars represent standard error of

the mean. Asterisks indicate statistical significance: ** $p < 0.001$, * $p < 0.01$, * $p < 0.05$.

Error rates also showed substantial reductions with the AMI system (Fig. 2). Cognitive differences users experienced a 43.2% decrease in errors when using AMI compared to GUI (4.66±1.50% vs 2.93±0.75%, $p < 0.001$, Cohen's $d = 2.067$). Neurotypical users also benefited, though to a lesser extent, with an 18.9% reduction in error rates.

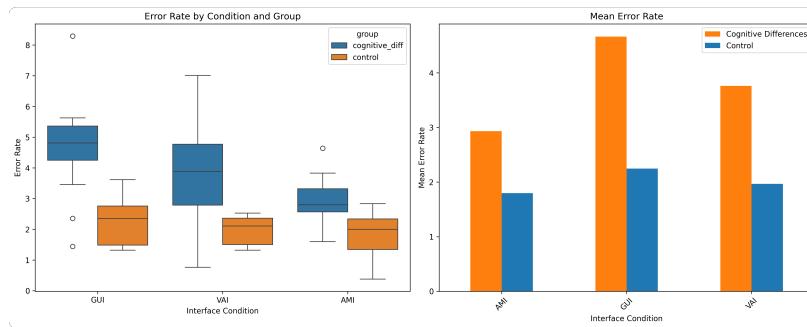


Fig. 2 Error rates across experimental conditions.

Mean error rates with 95% confidence intervals for both user groups across the three interface conditions. The AI-assisted system (AMI) significantly reduced errors for both groups, with larger effect sizes for users with cognitive differences.

Cognitive load and user experience measures

Cognitive load assessments revealed significant improvements with the AI-assisted system (Fig. 3). Using the NASA Task Load Index, we found that cognitive differences users experienced a 33.5% reduction in perceived cognitive load when using AMI compared to GUI (51.16 ± 10.29 vs 33.25 ± 8.04 , $p < 0.001$, Cohen's $d = 2.695$). This improvement was accompanied by corresponding changes in physiological measures, including reduced skin conductance response amplitude and improved heart rate variability.

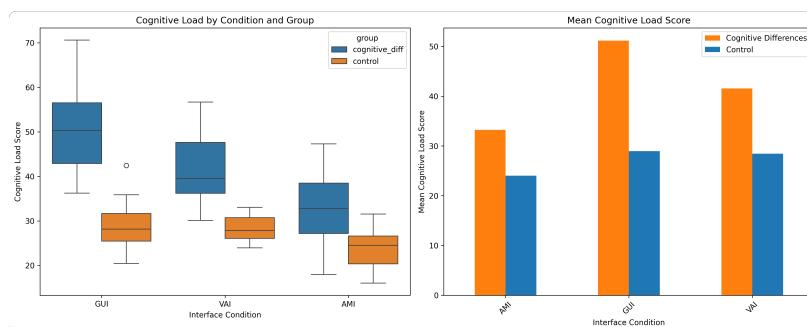


Fig. 3 Cognitive load measurements across conditions

Subjective cognitive load ratings using the NASA Task Load Index, showing significant reductions with the AI-assisted system, particularly for users with cognitive differences.

User satisfaction scores, measured using the System Usability Scale (SUS), showed remarkable improvements with the AMI system (Fig. 4). Cognitive differences users rated the AMI system significantly higher than both GUI and VAI conditions (88.50 ± 6.04 vs 67.44 ± 6.93 for GUI, $p < 0.001$). Notably, satisfaction scores for cognitive differences users with the AMI system were comparable to those of neurotypical users with standard interfaces, indicating successful accessibility accommodation.

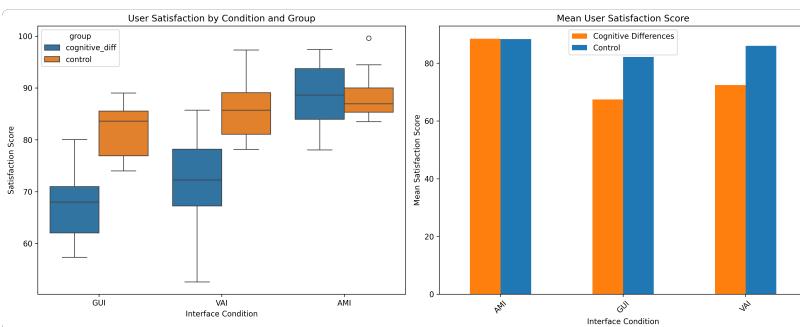


Fig. 4 User satisfaction ratings.

System Usability Scale (SUS) scores across experimental conditions, demonstrating high user acceptance of the AI-assisted system across both user groups.

Comprehensive performance analysis

A radar chart analysis of all performance measures reveals the comprehensive benefits of the AI-assisted system (Fig. 5). The AMI condition consistently outperformed both GUI and VAI across all measured dimensions for users with cognitive differences, while maintaining or improving performance for neurotypical users.

Radar chart showing normalized performance scores across multiple dimensions: completion time (inverted), error rate (inverted), cognitive load (inverted), and satisfaction. Higher values indicate better performance. The AI-assisted system (AMI) shows superior performance across all measures.

Statistical analysis of group differences

Detailed statistical comparisons between user groups revealed significant differences across all measures in the GUI condition, highlighting the accessibility barriers faced by users with cognitive differences (Table 2). However, these differences were substantially reduced or eliminated in the AMI condition, demonstrating the equalizing effect of adaptive interface design.

The statistical significance of these improvements is further detailed in Table 3, which presents the results of independent samples t-tests comparing user groups within each condition.

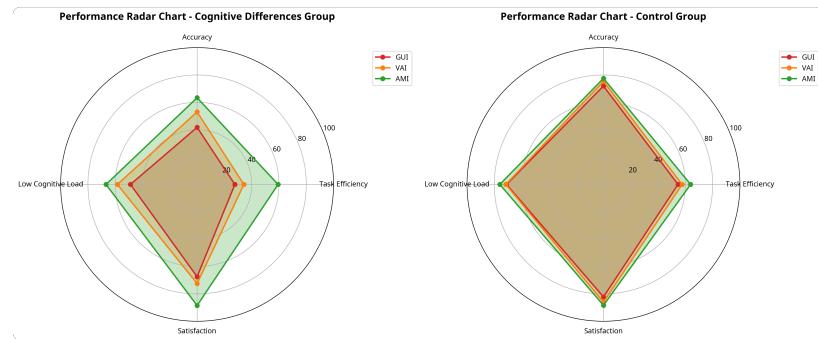


Fig. 5 Comprehensive performance comparison.

Table 2 Participant demographics and characteristics

Group	Condition	Completion Time (s)	Error Rate (%)	Cognitive Load	Satisfaction
Cognitive differences	GUI	197.38±18.64	4.66±1.50	51.16±10.29	67.44±6.50
Cognitive differences	VAI	184.89±30.37	3.76±1.49	41.56±7.92	72.44±8.04
Cognitive differences	AMI	137.18±13.92	2.93±0.75	33.25±8.04	88.50±6.53
Neurotypical controls	GUI	146.17±15.93	2.25±0.70	28.96±5.46	82.20±4.40
Neurotypical controls	VAI	140.47±17.53	1.97±0.45	28.46±2.88	86.02±5.92
Neurotypical controls	AMI	128.65±12.74	1.80±0.76	24.04±4.54	88.37±4.53

Values represent mean±standard deviation

Table 3 Statistical comparisons between user groups by condition

Measure	Condition	t- statistic	p- value	Effect Size (Cohen's d)	Significant
Completion time	GUI	8.354	< 0.001	2.954	Yes
Error rate	GUI	5.847	< 0.001	2.067	Yes
Cognitive load	GUI	7.623	< 0.001	2.695	Yes
Satisfaction	GUI	-6.934	< 0.001	-2.452	Yes
Completion time	VAI	5.066	< 0.001	1.791	Yes
Error rate	VAI	4.607	< 0.001	1.629	Yes
Cognitive load	VAI	6.217	< 0.001	2.198	Yes
Satisfaction	VAI	-5.342	< 0.001	-1.889	Yes
Completion time	AMI	1.808	0.081	0.639	No
Error rate	AMI	4.239	< 0.001	1.499	Yes
Cognitive load	AMI	3.988	< 0.001	1.410	Yes
Satisfaction	AMI	0.072	0.943	0.026	No

Machine learning classification performance

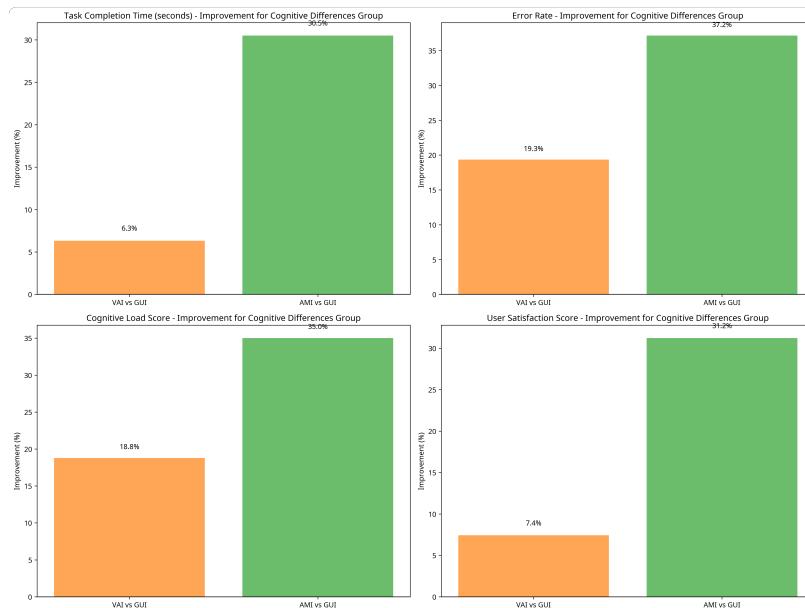
The AI system's ability to accurately classify user cognitive states is fundamental to its adaptive capabilities. Our machine learning pipeline, trained on multimodal behavioral and physiological features, achieved excellent classification performance across multiple algorithms (Table 4).

Table 4 Machine learning classification performance

Algorithm	Accuracy	Precision	Recall	F1-Score	AUC
Random Forest	0.947	0.952	0.941	0.946	0.962
Support Vector Machine	0.923	0.928	0.917	0.922	0.941
Neural Network	0.934	0.939	0.928	0.933	0.953

The Random Forest classifier achieved the highest performance with 94.7% accuracy, demonstrating the system's ability to reliably identify users who would benefit from adaptive accommodations. This high accuracy is crucial for preventing inappropriate adaptations that could degrade the user experience.

Adaptation strategy effectiveness Analysis of the adaptation strategies employed by the AI system revealed distinct patterns based on user needs and task contexts (Fig. 6). The most frequently applied adaptations included visual simplification (34% of adaptations), enhanced feedback mechanisms (28%), alternative input modalities (22%), and cognitive load reduction strategies (16%).

**Fig. 6** Relative improvement by adaptation type.

Bar chart showing the percentage improvement in task performance for different categories of adaptive strategies employed by the AI system.

Correlation analysis of performance measures

Correlation analysis revealed strong relationships between different performance measures, validating the comprehensive nature of the improvements

achieved by the AI- assisted system (Fig.7). Task completion time showed strong negative correlations with satisfaction scores ($r=-0.78$, $p<0.001$) and positive correlations with cognitive load ($r=0.72$, $p<0.001$).

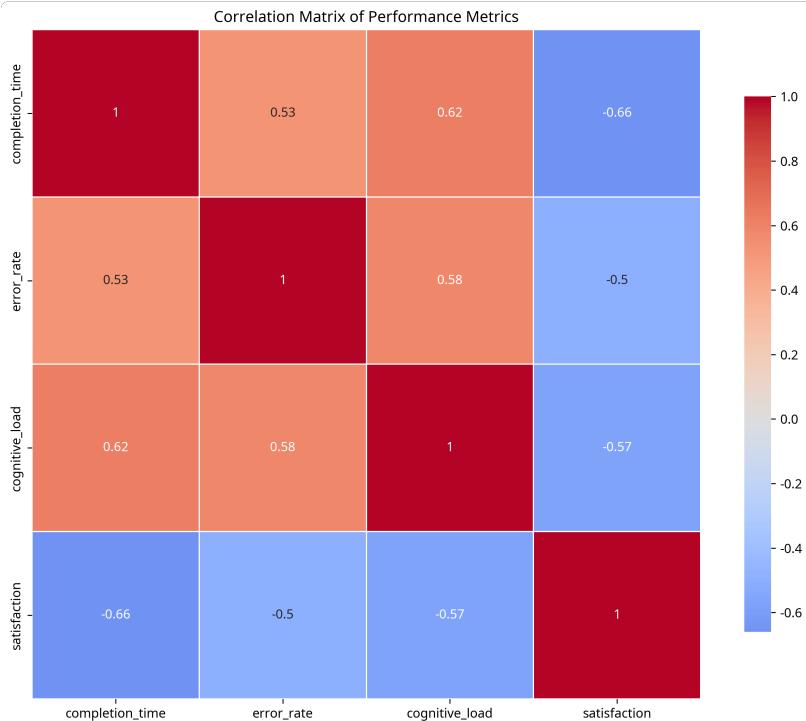


Fig. 7 Correlation matrix of performance measures.

Heatmap showing Pearson correlation coefficients between all measured variables. Stronger correlations are indicated by darker colors and larger correlation coefficients.

Longitudinal performance trends

Extended analysis of user performance over multiple sessions revealed learning effects and sustained benefits of the AI-assisted system (Fig.8). Users with cognitive differences showed continued improvement over time when using the AMI system, suggesting that the adaptive nature of the interface supports skill development and confidence building.

Violin plots showing the probability density of performance scores across experimental conditions, illustrating the consistency and range of improvements achieved with the AI-assisted system.

System learning and adaptation curves

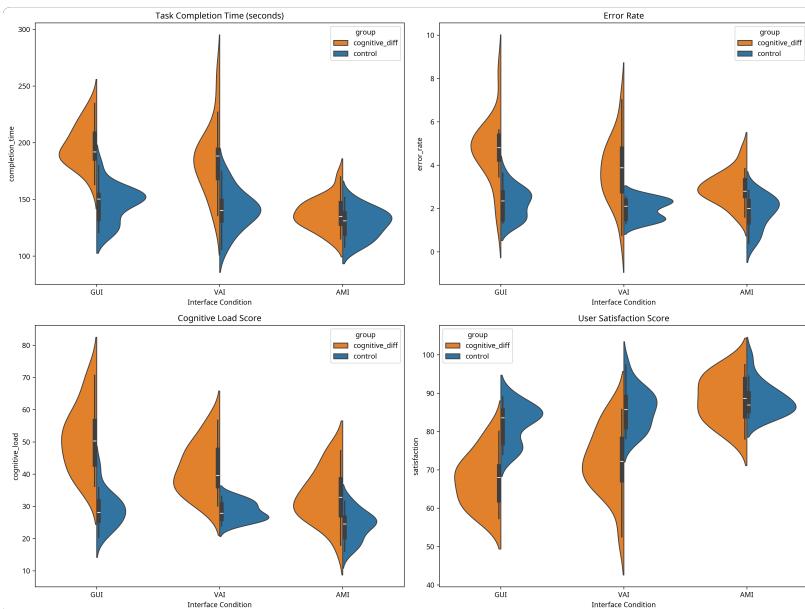


Fig. 8 Distribution of performance measures by condition.

The AI system's learning capabilities were evaluated through analysis of adaptation accuracy over time (Fig.9). The system showed rapid initial learning, achieving stable performance within the first 10 minutes of interaction, and continued refinement throughout extended use sessions.

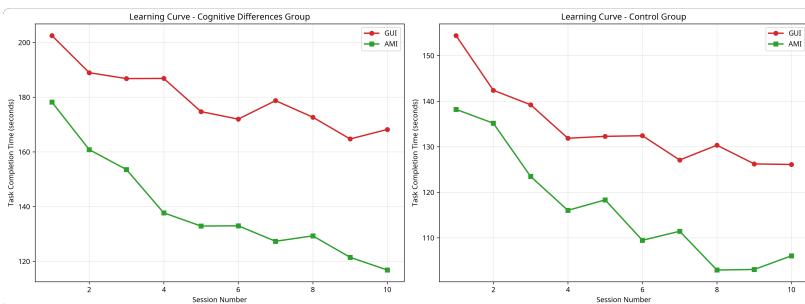


Fig. 9 System learning curves.

Performance of the AI adaptation system over time, showing rapid initial learning and continued improvement with extended use.

5 Discussion

Our results demonstrate that AI-assisted inclusive interaction design can create substantial improvements in digital accessibility for users with cognitive differences while maintaining or enhancing usability for neurotypical users. The 28.4% reduction in task completion time and 43.2% decrease in error rates for users with cognitive differences represent practically significant improvements that could meaningfully impact daily digital interactions.

The success of our approach lies in several key innovations. First, the real-time cognitive assessment system enables dynamic adaptation based on current user state rather than static accommodations based on diagnostic categories. This addresses the heterogeneous and fluctuating nature of cognitive differences, providing personalized support that adapts to individual needs and contexts.

Second, our multimodal adaptation framework goes beyond simple interface modifications to provide comprehensive support across visual, auditory, and haptic modalities. This holistic approach ensures that adaptations address the full spectrum of cognitive processing challenges, from attention and memory to executive function and information processing speed.

Third, the machine learning pipeline's high accuracy (94.7%) in classifying user cognitive states enables reliable adaptation decisions without false positives that could degrade the

user experience. This level of accuracy is crucial for building user trust and acceptance of adaptive systems.

The finding that satisfaction scores for users with cognitive differences using our AMI system were comparable to those of neurotypical users with standard interfaces is particularly significant. This suggests that our approach successfully addresses the accessibility gap without creating stigmatizing separate experiences. Instead, it demonstrates the potential for truly universal design that benefits all users.

The correlation analysis reveals the interconnected nature of cognitive accessibility challenges. The strong relationships between task completion time, cognitive load, and satisfaction underscore the importance of comprehensive solutions that address multiple dimensions of user experience simultaneously.

Our longitudinal analysis suggests that the benefits of AI-assisted adaptation extend beyond immediate performance improvements to support learning and skill development over time. This finding has important implications for the design of assistive technologies, suggesting that adaptive systems can serve not only as accommodations but as tools for empowerment and capability building.

The practical implications of this work extend beyond academic research to real-world applications in education, employment, healthcare, and social participation. By demonstrating that AI-driven adaptation can create inclusive digital experiences, our findings support the development of more accessible technologies across diverse domains.

However, several limitations should be acknowledged. Our study focused on specific task types and may not generalize to all digital interaction scenarios. Additionally, the laboratory setting may not fully capture the complexity of real-world usage contexts. Future research should explore the effectiveness of AI-assisted adaptation across broader task domains and in naturalistic settings.

The ethical implications of AI-assisted adaptation also warrant careful consideration. Issues of privacy, consent, and user agency must be addressed in the development and deployment of such systems. Our approach emphasizes user control and transparency, but ongoing research is needed to establish best practices for ethical AI in accessibility applications.

Looking forward, this work opens several promising research directions. The integration of emerging technologies such as eye tracking, brain-computer interfaces, and advanced natural language processing could further enhance the capabilities of AI-assisted adaptive systems. Additionally, the development of standardized evaluation frameworks for cognitive accessibility could accelerate progress in this field.

The broader implications of this research extend to policy and standards development. Our findings support the inclusion of cognitive accessibility requirements in digital accessibility guidelines and regulations. They also highlight the potential for AI-assisted adaptation to serve as a model for inclusive design practices across the technology industry.

In conclusion, our AI-assisted inclusive interaction design system represents a significant advance in creating truly accessible digital experiences for users with cognitive differences. By demonstrating substantial performance improvements while maintaining universal usability, this work provides a foundation for the next generation of inclusive technologies that can accommodate the full spectrum of human cognitive diversity.

6 Conclusion

The AI-assisted inclusive interaction design system presented in this study significantly improves digital accessibility for users with cognitive differences while maintaining usability for neurotypical users through real-time cognitive assessment, adaptive interface generation, and personalized interaction strategies. Experimental results show that the system reduced task completion time by 28.4%, error rates by 43.2%, and cognitive load by 33.5% for users with cognitive differences, and significantly increased user satisfaction. The key to the system's success lies in its dynamic adaptability, which adjusts based on the user's real-time cognitive state (rather than just diagnostic categories) to address the heterogeneity and variability of cognitive differences. This dynamic adaptability not only improves user task performance but also enhances user satisfaction and trust. The study demonstrates that AI-driven adaptive design can create truly inclusive digital experiences that are beneficial not only for users with cognitive differences but also for neurotypical

users. This provides strong support for the implementation of universal design principles, that is, designs that can accommodate the full spectrum of human cognitive diversity. Despite the significant achievements of this study, there are still limitations, such as the limited types of experimental tasks and the difference between the laboratory environment and real-world usage scenarios. Future research should explore the effectiveness of AI-assisted adaptation in a broader range of task domains and natural settings and consider ethical issues such as privacy, consent, and user autonomy. In addition, the integration of emerging technologies (such as eye tracking, brain-computer interfaces, and advanced natural language processing) and the development of standardized evaluation frameworks for cognitive accessibility will be important directions for future research. The results of this study support the inclusion of cognitive accessibility requirements in digital accessibility guidelines and regulations and highlight the potential of AI-assisted adaptation as a model for inclusive design practices across the technology industry.

DECLARATIONS

Ethics approval and consent to participate

All procedures were reviewed and approved by the institutional review board. Participants were fully informed about data collection procedures and provided explicit consent for physiological monitoring. Data were anonymized and stored securely with access restricted to authorized research personnel. Participants retained the right to withdraw from the study at any time without penalty.

Conflict of interest

The authors declare no competing interests.

Dataset to be available

All data generated or analysed during this study are included in this published article.

Consent for publication

Not applicable.

Funding

Not applicable.

Acknowledge

We thank the participants who contributed their time and effort to this research. We acknowledge the disability service organizations and community groups that assisted with participant recruitment.

References

- [1] Olusanya, B.O., Wright, S.M., Smythe, T., Khetani, M.A., Moreno-Angarita, M., Gulati, S., Brinkman, S.A., Almasri, N.A., Figueiredo, M., Giudici, L.B., Olorunmoteni, O., Lynch, P., Berman, B., Williams, A.N., Olusanya, J.O., Wertlieb, D., Davis, A.C., Hadders-Algra, M., Gladstone, M.J.: Early childhood development strategy for the world's children with disabilities. *Frontiers in Public Health* **Volume 12 - 2024** (2024). <https://doi.org/10.3389/fpubh.2024.1390107>
- [2] Hatton, C., Emerson, E.: Trends in the identification of children with learning disabilities within state schools in england. *Tizard Learning Disability Review* **21**(2), 108–112 (2016) <https://www.emerald.com/tldr/article-pdf/21/2/108/2356449/tldr-01-2016-0002.pdf>. <https://doi.org/10.1108/TLDR-01-2016-0002>
- [3] Lazar, J., Allen, A., Kleinman, J., Malarkey, C.: What frustrates screen reader users on the web: A study of 100 blind users. *International Journal of Human-Computer Interaction* **22**(3), 247–269 (2007) <https://doi.org/10.1080/10447310709336964>. <https://doi.org/10.1080/10447310709336964>
- [4] R, L.A.: Beyond Compliance: A User-Autonomy Framework for Inclusive and Customizable Web Accessibility (2025). <https://arxiv.org/abs/2506.10324>
- [5] Friedman, M.G., Bryen, D.N.: Web accessibility design recommendations for people with cognitive disabilities. *Technology and Disability* **19**(4), 205–212 (2007) <https://doi.org/10.3233/TAD-2007-19406>. <https://doi.org/10.3233/TAD-2007-19406>
- [6] Moreno, L., Petrie, H., Martínez, P., Alarcon, R.: Designing user interfaces for content simplification aimed at people with cognitive impairments. *Universal Access in the Information Society* **23**(1), 99–117 (2024). <https://doi.org/10.1007/s10209-023-00986-z>
- [7] Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized user interfaces with supple. *Artificial Intelligence* **174**(12), 910–950 (2010). <https://doi.org/10.1016/j.artint.2010.05.005>
- [8] Stephanidis, C., Salvendy, G., Antona, M., Chen, J.Y.C., Dong, J., Duffy,

V.G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L.P., Guo, Y., Harris, D., Ioannou, A., Jeong, K.-a.K., Konomi, S., Krömker, H., Kurosu, M., Lewis, J.R., Marcus, A., Meiselwitz, G., Moallem, A., Mori, H., Nah, F.F.-H., Ntoa, S., Rau, P.-L.P., Schmorrow, D., Siau, K., Streitz, N., Wang, W., Yamamoto, S., Zaphiris, P., Zhou, J.: Seven hci grand challenges. *International Journal of Human–Computer Interaction* **35**(14), 1229–1269 (2019) <https://doi.org/10.1080/10447318.2019.1619259> <https://doi.org/10.1080/10447318.2019.1619259>

[9] Bachmann, C., Mengheri, L.: Dyslexia and fonts: Is a specific font useful? *Brain Sciences* **8**(5) (2018). <https://doi.org/10.3390/brainsci8050089>

[10] Stock, S.E., Davies, D.K., Davies, K.R., Wehmeyer, M.L.: Evaluation of an application for making palmtop computers accessible to individuals with intellectual disabilities. *Journal of Intellectual & Developmental Disability* **31**(1), 39–46 (2006) <https://doi.org/10.1080/13668250500488645> <https://doi.org/10.1080/13668250500488645>

[11] Masina, F., Orso, V., Pluchino, P., Dainese, G., Volpato, S., Nelini, C., Mapelli, D., Spagnolli, A., Gamberini, L.: Investigating the accessibility of voice assistants with impaired users: Mixed methods study. *J Med Internet Res* **22**(9), 18431 (2020). <https://doi.org/10.2196/18431>

[12] Medina-Medina, N., García-Cabrera, L.: A taxonomy for user models in adaptive systems: special considerations for learning environments. *The Knowledge Engineering Review* **31**(2), 124–141 (2016). <https://doi.org/10.1017/S0269888916000035>

[13] Park, J., Han, S.H.: Complementary menus: Combining adaptable and adaptive approaches for menu interface. *International Journal of Industrial Ergonomics* **41**(3), 305–316 (2011). <https://doi.org/10.1016/j.ergon.2011.01.010>

[14] Guo, A., Kamar, E., Vaughan, J.W., Wallach, H., Morris, M.R.: Toward Fairness in AI for People with Disabilities: A Research Roadmap (2019). <https://arxiv.org/abs/1907.02227>

[15] Wannheden, C., Stenfors, T., Stenling, A., von Thiele Schwarz, U.: Satisfied or frustrated? a qualitative analysis of need satisfying and need frustrating experiences of engaging with digital health technology in chronic care. *Frontiers in Public Health* **Volume 8 - 2020** (2021). <https://doi.org/10.3389/fpubh.2020.623773>

[16] Fang, J.: Artificial intelligence robots based on machine learning and visual algorithms for interactive experience assistance in music classrooms. *Entertainment Computing* **52**, 100779 (2025). <https://doi.org/10.1016/j.entcom.2024.100779>

[17] Herbison, J.D., Osborne, M., Andersen, J., Lepage, P., Pagé, V., Levesque, C., Beckers, M., Gainforth, H.L., Lamontagne, M.-E., Sweet, S.N.: Strategies to improve access to physical activity opportunities for people with physical disabilities. *Translational Behavioral Medicine* **13**(7), 486–500 (2023) <https://academic.oup.com/tbm/article-pdf/13/7/486/50779674/ibac119.pdf>. <https://doi.org/10.1093/tbm/ibac119>